10.某班級數(shù)學(xué)興趣小組為了研究人的腳的大小與身高的關(guān)系,隨機抽測了20位同學(xué),得到如下數(shù)據(jù):
序號12345678910
身高x(厘米)192164172177176159171166182166
腳長y(碼)48384043443740394639
序號11121314151617181920
身高x(厘米)169178167174168179165170162170
腳長y(碼)43414043404438423941
(Ⅰ)請根據(jù)“序號為5的倍數(shù)”的幾組數(shù)據(jù),求出y關(guān)于x的線性回歸方程
(Ⅱ)若“身高大于175厘米”為“高個”,“身高小于等于175厘米”的為“非高個”;“腳長大于42碼”為“大碼”,“腳長小于等于42碼”的為“非大碼”.請根據(jù)上表數(shù)據(jù)完成2×2列聯(lián)表:并根據(jù)列聯(lián)表中數(shù)據(jù)說明能有多大的可靠性認(rèn)為腳的大小與身高之間有關(guān)系?
(Ⅲ)若按下面的方法從這20人中抽取1人來核查測量數(shù)據(jù)的誤差:將一個標(biāo)有1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個數(shù)字的乘積為被抽取人的序號,求:抽到“無效序號(超過20號)”的概率.
附表及公式:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}},a=\overline y-b\overline x$.

分析 (I)分別求出$\overline{x}$,$\overline{y}$的值,求出$\widehat$,$\widehat{a}$的值,代入回歸方程即可;
(II) 根據(jù)高個和大腳的描述,統(tǒng)計出大腳,高個,非大腳和非高個的數(shù)據(jù),填入列聯(lián)表,再在合計的部分填表;
(III)先計算出投擲兩次出現(xiàn)情況的總數(shù),再分計算抽到“無效序號(超過20號)”的情況數(shù)結(jié)合概率的計算公式即可求得抽到“無效序號(超過20號)”的概率.

解答 解:(Ⅰ)“序號為5的倍數(shù)”的幾組數(shù)據(jù):
x1=176,x2=166,x3=168,x4=170,
y1=44,y2=39,y3=40,y4=41,
則$\overline x=170,\overline y=41$,所以$b=\frac{1}{2},a=-44$,
從而y關(guān)于x的線性回歸方程是$\hat y=\frac{1}{2}x-44$.  …(6分)
(Ⅱ)2×2列聯(lián)表:

高 個非高個合計
大腳527
非大腳11213
合計61420
${k^2}=\frac{{20×{{(5×12-1×2)}^2}}}{6×14×7×13}≈8.802>7.879$,
有99.5%的把握認(rèn)為:人的腳的大小與身高之間有關(guān)系.…(10分)
(Ⅲ)$P=\frac{6}{36}=\frac{1}{6}$.   …(12分)

點評 本題考查獨立性檢驗,包括數(shù)據(jù)的統(tǒng)計,是一個中檔題,本題在個別省份作為高考題目出現(xiàn)過,要引起同學(xué)們注意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,三棱錐P-ABC中,D是BC的中點,△PAB為等邊三角形,△ABC為等腰直角三角形,AB=AC=4,且二面角P-AB-D的余弦值為$\frac{\sqrt{3}}{3}$.
(Ⅰ)求證:平面ABC⊥平面PBC;
(Ⅱ)若點M是線段AP上一動點,點N為線段AB的四等分點(靠近B點),求直線NM與平面PAD所成角的余弦值的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知直線l1:(m+2)x-y+5=0與l2:(m+3)x+(18+m)y+2=0垂直,則實數(shù)m的值為( 。
A.2或4B.1或4C.1或2D.-6或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{1}{2}$,過C1的左焦點F1的直線l:x-y+2=0,直線l被圓C2:(x-3)2+(y-3)2=r2(r>0)截得的弦長為2$\sqrt{2}$.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)C1的右焦點為F2,在圓C2上是否存在點P,滿足|PF1|=$\frac{a}$|PF2|,若存在,指出有幾個這樣的點(不必求出點的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,過F2作一條直線(不與x軸垂直)與橢圓交于A,B兩點,如果△ABF1恰好為等腰直角三角形,該直線的斜率為( 。
A.±1B.±2C.$±\sqrt{2}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.用系統(tǒng)抽樣法從200名學(xué)生中抽取容量為20的樣本,現(xiàn)將200名學(xué)生隨機地從1~200編號,按編號順序平均分成20組(1~10號,11~20號,…,191~200號),若前3組抽出的號碼之和為39,則抽到的2組的號碼是13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.北宋數(shù)學(xué)家沈括的主要數(shù)學(xué)成就之一為隙積術(shù),所謂隙積,即“積之有隙”者,如累棋、層壇之類,這種長方臺形狀的物體垛積.設(shè)隙積共n層,上底由長為a個物體,寬為b個物體組成,以下各層的長、寬依次各增加一個物體,最下層成為長為c個物體,寬為d個物體組成,沈括給出求隙積中物體總數(shù)的公式為S=$\frac{n}{6}[{({2b+d})a+({b+2d})c}]+\frac{n}{6}({c-a})$.已知由若干個相同小球粘黏組成的幾何體垛積的三視圖如圖所示,則該垛積中所有小球的個數(shù)為85.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)A={x|x2-4x-5=0},B={x|x2=1},則A∪B=( 。
A.{-1,1,5}B.{-1,5}C.{1,5}D.{-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知扇形的圓心角為α(α>0),半徑為R.
(1)若α=60°,R=10cm,求圓心角α所對的弧長.
(2)若扇形的周長是8cm,面積是4cm2,求α和R.

查看答案和解析>>

同步練習(xí)冊答案