19.設(shè)A={x|x2-4x-5=0},B={x|x2=1},則A∪B=(  )
A.{-1,1,5}B.{-1,5}C.{1,5}D.{-1}

分析 分別解方程化簡(jiǎn)A,B,找出A與B的并集即可.

解答 解:設(shè)A={x|x2-4x-5=0}={-1,5},B={x|x2=1}={-1,1},則A∪B={-1,1,5},
故選:A

點(diǎn)評(píng) 此題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知直線l與函數(shù)$f(x)=ln({\sqrt{e}x})-ln({1-x})$的圖象交于A,B兩點(diǎn),若AB中點(diǎn)為點(diǎn)$P({\frac{1}{2},m})$,則m的大小為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某班級(jí)數(shù)學(xué)興趣小組為了研究人的腳的大小與身高的關(guān)系,隨機(jī)抽測(cè)了20位同學(xué),得到如下數(shù)據(jù):
序號(hào)12345678910
身高x(厘米)192164172177176159171166182166
腳長(zhǎng)y(碼)48384043443740394639
序號(hào)11121314151617181920
身高x(厘米)169178167174168179165170162170
腳長(zhǎng)y(碼)43414043404438423941
(Ⅰ)請(qǐng)根據(jù)“序號(hào)為5的倍數(shù)”的幾組數(shù)據(jù),求出y關(guān)于x的線性回歸方程
(Ⅱ)若“身高大于175厘米”為“高個(gè)”,“身高小于等于175厘米”的為“非高個(gè)”;“腳長(zhǎng)大于42碼”為“大碼”,“腳長(zhǎng)小于等于42碼”的為“非大碼”.請(qǐng)根據(jù)上表數(shù)據(jù)完成2×2列聯(lián)表:并根據(jù)列聯(lián)表中數(shù)據(jù)說明能有多大的可靠性認(rèn)為腳的大小與身高之間有關(guān)系?
(Ⅲ)若按下面的方法從這20人中抽取1人來核查測(cè)量數(shù)據(jù)的誤差:將一個(gè)標(biāo)有1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個(gè)數(shù)字的乘積為被抽取人的序號(hào),求:抽到“無效序號(hào)(超過20號(hào))”的概率.
附表及公式:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}},a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點(diǎn)(1,1)在不等式組$\left\{{\begin{array}{l}{my≥1}\\{mx+ny≤2}\\{ny-mx≤2}\end{array}}\right.$表示的平面區(qū)域內(nèi),則m2+n2+1的取值范圍是(  )
A.[4,+∞)B.[2,4]C.[2,+∞)D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一件工作可以用2種方法完成,有3人會(huì)用第1種方法完成,另外5人會(huì)用第2種方法完成,從中選出1人來完成這件工作,不同選法的種數(shù)是( 。
A.8B.15C.16D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=x3+ax2-9x-1(a<0),若曲線y=f(x)在各點(diǎn)處的切線斜率的最小值是-12,求:
(1)a的值;
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知角α的終邊與單位圓交于點(diǎn)$P(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$,則cosα的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義在實(shí)數(shù)域上的偶函數(shù)f(x)對(duì)于?x∈R,均滿足條件f(x+2)=f(x)+f(1),且當(dāng)x∈[2,3]時(shí),f(x)=-2x2+12x-18,若函數(shù)y=f(x)-loga(|x|+1)在(0,+∞)上至少有5個(gè)零點(diǎn),則a的取值范圍是( 。
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{\sqrt{3}}{3}$)C.(0,$\frac{\sqrt{5}}{5}$)D.(0,$\frac{\sqrt{6}}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,陰影部分的面積為(  )
A.2$\sqrt{3}$B.2-$\sqrt{3}$C.$\frac{32}{3}$D.$\frac{35}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案