【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(2)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數(shù)據(jù): ,計算結(jié)果保留小數(shù)點后兩位)
【答案】(1); (2)預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量約為7.72萬噸.
【解析】
(1)求得樣本中心點(,),利用最小二乘法即可求得線性回歸方程;
(2)由(1)可知:將t=8代入線性回歸方程,即可求得該地區(qū)2019年該農(nóng)產(chǎn)品的產(chǎn)量估計值為7.72萬噸.
(1)由題意可知:,
,
,
∴,
又,
∴關(guān)于的線性回歸方程為.
(2)由(1)可得,當年份為2019年時,年份代碼,此時,所以,可預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量約為7.72萬噸.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為0的等差數(shù)列的前三項和為6,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè),數(shù)列的前項和為,求使的的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的正方體ABCD-A1B1C1D1中,E是BC的中點,F是DD1的中點,
(1)求證:CF∥平面A1DE;
(2)求平面A1DE與平面A1DA夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù),
(1)若函數(shù)為奇函數(shù),求m的值;
(2)若函數(shù)在上是增函數(shù),求實數(shù)m的取值范圍;
(3)若函數(shù)在上的最小值為,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天的時間與水深關(guān)系表:
時刻 | 2:00 | 5:00 | 8:00 | 11:00 | 14:00 | 17:00 | 20:00 | 23:00 |
水深(米) | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
經(jīng)長期觀測,這個港口的水深與時間的關(guān)系,可近似用函數(shù)f(t)=Asin(ωt+)+b來描述.
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)f(t)=Asin(ωt+)+b的表達式;
(2)一條貨船的吃水深度(船底與水面的距離)為4.25米,安全條例規(guī)定至少要有2米的安全間隙(船底與洋底的距離),該船在一天內(nèi)(0:00~24:00)何時能進入港口然后離開港口?每次在港口能停留多久?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某銀行對某市最近5年住房貸款發(fā)放情況(按每年6月份與前一年6月份為1年統(tǒng)計)作了統(tǒng)計調(diào)查,得到如下數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
貸款(億元) | 50 | 60 | 70 | 80 | 100 |
(1)將上表進行如下處理:,
得到數(shù)據(jù):
1 | 2 | 3 | 4 | 5 | |
0 | 1 | 2 | 3 | 5 |
試求與的線性回歸方程,再寫出與的線性回歸方程.
(2)利用(1)中所求的線性回歸方程估算2019年房貸發(fā)放數(shù)額.
參考公式:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列事件是隨機事件的是( 。
①當x>10時,; ②當x∈R,x2+x=0有解
③當a∈R關(guān)于x的方程x2+a=0在實數(shù)集內(nèi)有解; ④當sinα>sinβ時,α>β( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線, (為參數(shù), 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的直角坐標方程為.
(Ⅰ)將曲線的直角坐標方程化為極坐標方程;
(Ⅱ)設(shè)點的直角坐標為,直線與曲線的交點為、,求的取值范圍.
【答案】(I);(II).
【解析】試題分析:(Ⅰ)將由代入,化簡即可得到曲線的極坐標方程;(Ⅱ)將的參數(shù)方程代入,得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達定理結(jié)合輔助角公式,由三角函數(shù)的有界性可得結(jié)果.
試題解析:(Ⅰ)由及,得,即
所以曲線的極坐標方程為
(II)將的參數(shù)方程代入,得
∴, 所以,又,
所以,且,
所以,
由,得,所以.
故的取值范圍是.
【題型】解答題
【結(jié)束】
23
【題目】已知、、均為正實數(shù).
(Ⅰ)若,求證:
(Ⅱ)若,求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com