A. | 關于點(-$\frac{π}{12}$,0)對稱 | B. | 關于點($\frac{π}{6}$,0)對稱 | ||
C. | 關于直線x=$\frac{π}{6}$對稱 | D. | 關于直線x=$\frac{π}{2}$對稱 |
分析 根據余弦函數f(x)的圖象與性質,對選項中的命題進行分析、判斷正誤即可.
解答 解:函數f(x)=3cos(2x+$\frac{π}{6}$),則
f(-$\frac{π}{12}$)=3cos(-$\frac{π}{6}$+$\frac{π}{6}$)=3≠0,
∴f(x)的圖象不關于點(-$\frac{π}{12}$,0)對稱,A錯誤;
f($\frac{π}{6}$)=3cos($\frac{π}{3}$+$\frac{π}{6}$)=0,
∴f(x)的圖象關于點($\frac{π}{6}$,0)對稱,B正確;
∴f(x)的圖象不關于直線x=$\frac{π}{6}$對稱,C錯誤;
f($\frac{π}{2}$)=3cos(π+$\frac{π}{6}$)=-$\frac{3\sqrt{3}}{2}$,
∴f(x)的圖象不關于直線x=$\frac{π}{2}$對稱,D錯誤.
故選:B.
點評 本題考查了余弦函數f(x)的圖象與性質的應用問題,是基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 97+56$\sqrt{3}$ | B. | 144 | C. | 73+40$\sqrt{3}$ | D. | 4p2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-1,1] | B. | [-1,3] | C. | (-∞,-1]∪[3,+∞) | D. | (-∞,-1]∪[1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | c>a>b | B. | c>b>a | C. | a>b>c | D. | a>c>b |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{x^2}{5}+\frac{y^2}{10}=1$ | B. | $\frac{x^2}{10}+\frac{y^2}{15}=1$ | C. | $\frac{x^2}{15}+\frac{y^2}{10}=1$ | D. | $\frac{x^2}{25}+\frac{y^2}{10}=1$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com