20.求下列函數(shù)的導(dǎo)數(shù).
(1)y=(x+1)(x+2)(x+3)
(2)y=2x•tanx.

分析 (1)先將函數(shù)的解析式變形可得y=x3+6x2+11x+6,對其求導(dǎo)即可得答案;
(2)由同角三角函數(shù)的基本關(guān)系式分析可得y=$\frac{2xsinx}{cosx}$,利用商的導(dǎo)數(shù)計算公式計算可得答案.

解答 解:(1)y=(x+1)(x+2)(x+3)=x3+6x2+11x+6,
則其導(dǎo)數(shù)y′=3x2+12x+11;
(2)y=2x•tanx=$\frac{2xsinx}{cosx}$,
其導(dǎo)數(shù)y′=($\frac{2xsinx}{cosx}$)′=2×$\frac{(xsinx)′cosx-xsinx(cosx)′}{co{s}^{2}x}$=$\frac{2sinxcosx+2x}{co{s}^{2}x}$.

點評 本題考查導(dǎo)數(shù)的計算,關(guān)鍵是牢記導(dǎo)數(shù)計算的公式以及運算方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=(x+m)lnx-(m+1+$\frac{1}{e}$)x在x=e處取到極值
(Ⅰ)求m的值
(Ⅱ)當(dāng)x>1時,證明f(x)+(2+$\frac{1}{e}$)x>2x-2
(Ⅲ)如果s,t,r滿足|s-r|≤|t-r|,那么稱s比t更靠近r,當(dāng)a≥2且x≥1時,試比較$\frac{e}{x}$和ex-1+a哪個更靠近f(x),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如果函數(shù)f(x)=3cos(2x+$\frac{π}{6}$),則f(x)的圖象( 。
A.關(guān)于點(-$\frac{π}{12}$,0)對稱B.關(guān)于點($\frac{π}{6}$,0)對稱
C.關(guān)于直線x=$\frac{π}{6}$對稱D.關(guān)于直線x=$\frac{π}{2}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖是正方體的側(cè)面展開圖,l1、l2是兩條側(cè)面對角線,則在此正方體中,l1與l2(  )
A.互相平行B.相交且夾角為$\frac{π}{3}$C.異面且互相垂直D.異面且夾角為$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知命題$p:?{x_0}∈R,使x_0^2+{x_0}+1<0,命題q:?a∈R,若b>c,則ab>ac$,給出下列結(jié)論:
①命題“p∧q”是真命題
②命題“p∨q”是真命題
③命題“(?p)∨q”是真命題
④命題“(?p)∧(?q)”是真命題
其中正確的是(  )
A.①③B.①④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=4x5+3x4+2x3-x2-x-$\frac{1}{2}$,用秦九韶算法求f(-2)等于( 。
A.-$\frac{197}{2}$B.$\frac{197}{2}$C.$\frac{183}{2}$D.-$\frac{183}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a>0,函數(shù)f(x)=ax-x2.求f(x)≤1,x∈[0,1]恒成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在數(shù)列{an}中,若a1=-2,且對任意的n∈N*有an+1=1+an,則數(shù)列{an}前10項的和為( 。
A.5B.10C.25D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若zl=a+2i,z2=3-4i,且$\frac{z_1}{z_2}$為實數(shù),則實數(shù)a的值為$-\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案