5.在極坐標(biāo)系中,點(diǎn)(ρ,θ)與點(diǎn)(-ρ,π-θ)的位置關(guān)系是( 。
A.關(guān)于極軸所在直線對稱B.關(guān)于極點(diǎn)對稱
C.重合D.關(guān)于直線θ=$\frac{π}{2}$(ρ∈R)對稱

分析 利用極坐標(biāo)的定義、軸對稱性即可得出.

解答 解:如圖所示,
在極坐標(biāo)系中,點(diǎn)(ρ,θ)與點(diǎn)(-ρ,π-θ)的位置關(guān)系
是關(guān)于極軸所在直線對稱.
故選:A.

點(diǎn)評 本題考查了極坐標(biāo)的定義、軸對稱性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.經(jīng)過(3,4),且與圓x2+y2=25相切的直線的方程為3x+4y-25=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,AB是圓O的直徑,點(diǎn)C在圓O上,延長BC到D使BC=CD,過C作圓O的切線交AD于E.若AB=6,ED=2,則BC=(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$(t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{ln(x-1)}{x-2}$(x>2).
(Ⅰ) 判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)若存在實(shí)數(shù)a,使得f(x)<a對?x∈(2,+∞)均成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,圓C1的極坐標(biāo)方程是ρ2+2ρcosθ=0,圓C2的參數(shù)方程是$\left\{\begin{array}{l}{x=cosα}\\{y=-1+sinα}\end{array}\right.$(α是參數(shù)).
(1)求圓C1和圓C2的交點(diǎn)的極坐標(biāo);
(2)若直線l經(jīng)過圓C1和圓C2的一個(gè)交點(diǎn),且垂直于公共弦,求直線l的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知正三棱錐P-ABC底面邊長為6,底邊BC在平面α內(nèi),繞BC旋轉(zhuǎn)該三棱錐,若某個(gè)時(shí)刻它在平面α上的正投影是等腰直角三角形,則此三棱錐高的取值范圍是( 。
A.(0,$\sqrt{6}$]B.(0,$\frac{\sqrt{6}}{2}$]∪[$\sqrt{6}$,3]C.(0,$\frac{\sqrt{6}}{2}$]D.(0,$\sqrt{6}$]∪[3,$\frac{3\sqrt{6}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=(2-a)x-2(1+lnx)+a,g(x)=$\frac{ex}{e^x}$.
(1)若a=1,求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)若對任意給定的x0∈(0,e],在(0,e2]上方程f(x)=g(x0)總存在兩個(gè)不等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.計(jì)算下列矩陣的行列式,如可逆,求其逆$(\begin{array}{l}{1}&{2}&{3}&{4}\\{4}&{3}&{2}&{1}\\{10}&{9}&{8}&{7}\\{7}&{8}&{9}&{10}\end{array})$.

查看答案和解析>>

同步練習(xí)冊答案