11.已知e為自然對數(shù)的底,a=($\frac{2}{e}$)-0.3,b=($\frac{e}{2}$)0.4,c=log${\;}_{\frac{2}{e}}$e,則a,b,c的大小關(guān)系是( 。
A.c<b<aB.c<a<bC.b<a<cD.a<b<c

分析 根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),判斷大小即可.

解答 解:1<a=($\frac{2}{e}$)-0.3=${(\frac{e}{2})}^{0.3}$<b=($\frac{e}{2}$)0.4,
c=log${\;}_{\frac{2}{e}}$e,=$\frac{1}{ln2-1}$<0,
則c<a<b,
故選:B.

點評 本題考查了指數(shù)函數(shù)以及對數(shù)函數(shù)的性質(zhì),考查數(shù)的大小比較,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xoy中,以O(shè)為極點,x軸的正半軸為極軸,取相同的單位長度,建立極坐標(biāo)系.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}+2cosα\\ y=3+2sinα\end{array}$,(α∈[0,2π],α為參數(shù)),曲線C2的極坐標(biāo)方程為$ρsin({θ+\frac{π}{3}})=a({a∈R})$,若曲線C1與曲線C2有且僅有一個公共點,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,若$\overrightarrow$•($\overrightarrow$-$\overrightarrow{a}$)=2,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.從集合{2,3,4,5}中隨機抽取一個數(shù)a,從集合{4,6,8}中隨機抽取一個數(shù)b,則向量$\overrightarrow{m}$=(a,b)與向量$\overrightarrow{n}$=(-2,1)垂直的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖所示,AC與BD交于點E,AB∥CD,AC=3$\sqrt{5}$,AB=2CD=6,當(dāng)tanA=2時,$\overrightarrow{BE}•\overrightarrow{DC}$=-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知Sn為等差數(shù)列{an}的前n項和.若S9=18,則a3+a5+a7=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.二項式$(x-\frac{2}{x}{)^6}$的展開式的第二項是(  )
A.6x4B.-6x4C.12x4D.-12x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(3,-2),若$\overrightarrow{a}$∥$\overrightarrow$,則x=( 。
A.-3B.$-\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.袋中有2個黃球3個白球,甲乙兩人分別從中任取一球,取得黃球得1分,取得白球得2分,兩人總分和為X,則X=3的概率是$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊答案