A. | (2n-1)2 | B. | 4n-1 | C. | $\frac{{4}^{n}-1}{3}$ | D. | $\frac{{4}^{n+1}-4}{3}$ |
分析 等比數(shù)列{an}的前n項和Sn=2n-1,可得:a1=S1=1,a1+a2=22-1=3,解得a2.利用等比數(shù)列的通項公式可得an.再利用等比數(shù)列的求和公式即可得出.
解答 解:等比數(shù)列{an}的前n項和Sn=2n-1,∴a1=S1=1,a1+a2=22-1=3,解得a2=2.
∴公比q=2.
∴an=2n-1.
∴${a}_{n}^{2}$=4n-1,
則數(shù)列{an2}為等比數(shù)列,首項為1,公比為4.
其前n項和Tn=$\frac{{4}^{n}-1}{4-1}$=$\frac{{4}^{n}-1}{3}$.
故選:C.
點評 本題考查了數(shù)列遞推關系、等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2-ln2 | B. | 2ln2-$\frac{1}{2}$ | C. | 2+ln2 | D. | 2ln2+$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-1,0,1} | B. | {0,1} | C. | [0,1] | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{8}$π | B. | $\frac{1}{4}$π | C. | $\frac{3}{8}$π | D. | $\frac{1}{2}$π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com