11.已知拋物線y2=8x與垂直x軸的直線l相交于A,B兩點(diǎn),圓C:x2+y2=1分別與x軸正、負(fù)半軸相交于點(diǎn)P、N,且直線AP與BN交于點(diǎn)M
(1)求證:點(diǎn)M恒在拋物線上;
(2)求△AMN面積的最小值.

分析 (1)求出直線AP,BN的方程,可得M的坐標(biāo),即可證明結(jié)論;
(2)求出三角形的面積,利用基本不等式,即可得出結(jié)論.

解答 (1)證明:設(shè)A(x1,y1),B(x1,-y1)(x1>0),
由題意,P(1,0),N(-1,0),
直線AP的方程為(x1-1)y=y1(x-1),
直線BN的方程為(x1+1)y=-y1(x+1),
聯(lián)立,解得x=$\frac{1}{{x}_{1}}$,y=-$\frac{{y}_{1}}{{x}_{1}}$,
∵y12=8x1,∴y2=8x,
即點(diǎn)M恒在拋物線上;
(2)由(1)可得△AMN面積S=$\frac{1}{2}$|NP|(|y1|+|yM|)=|y1|+|$\frac{{y}_{1}}{{x}_{1}}$|=|y1|+|$\frac{8}{{y}_{1}}$|$≥4\sqrt{2}$,
當(dāng)且僅當(dāng)y1=$±2\sqrt{2}$,即A(1,$±2\sqrt{2}$)時(shí)取等號(hào),△AMN面積的最小值為4$\sqrt{2}$.

點(diǎn)評(píng) 本題考查直線方程,考查三角形面積的計(jì)算,考查基本不等式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x-4),x>2}\\{{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}\right.$,則f(-2017)=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.2017年離考考前第二次適應(yīng)性訓(xùn)練考試結(jié)束后,對(duì)全市的英語(yǔ)成績(jī)進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)英語(yǔ)成績(jī)的頻率分布直方圖形狀與正態(tài)分布N(95,82)的密度曲線非常擬合.據(jù)此估計(jì):在全市隨機(jī)柚取的4名高三同學(xué)中,恰有2名冋學(xué)的英語(yǔ)成績(jī)超過95分的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則數(shù)列{an2}的前n項(xiàng)和Tn=( 。
A.(2n-1)2B.4n-1C.$\frac{{4}^{n}-1}{3}$D.$\frac{{4}^{n+1}-4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,AC=4,BC=6,∠ACB=120°,若$\overrightarrow{AD}$=-2$\overrightarrow{BD}$,則$\overrightarrow{AC}$•$\overrightarrow{CD}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)i為虛數(shù)單位,復(fù)數(shù)z滿足z(2-i)=i3,則復(fù)數(shù)z的虛部為$-\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線x+y=3被曲線x2+y2-2y-3=0截得的弦長(zhǎng)為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知直線C1:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),C2:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),當(dāng)α=$\frac{π}{3}$時(shí),則C1與C2的交點(diǎn)坐標(biāo)為(1,0),($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a>0,b>0,$\frac{2}{a}+\frac{1}=\frac{1}{4}$,若不等式2a+b≥4m恒成立,則m的最大值為9.

查看答案和解析>>

同步練習(xí)冊(cè)答案