10.A={x∈N|2≤x≤4},B={x∈Z|x2-2x-3<0},則A∩B=( 。
A.{x|2≤x<3}B.{x|2≤x≤3}C.{2}D.{2,3}

分析 求出B中不等式的解集確定出B,找出A與B的交集即可.

解答 解:∵A={x∈N|2≤x≤4}={2,3,4},
B={x∈Z|x2-2x-3<0}={x∈Z|(x-3)(x+1)<0}={x∈Z|-1<x<3}={0,1,2},
∴A∩B={2},
故選:C.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=x2+aln(x+1).
(1)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)有兩個極值點(diǎn)x1,x2,且x1<x2,求證:0<$\frac{f({x}_{2})}{{x}_{1}}$<-$\frac{1}{2}$+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知復(fù)數(shù)z=1+mi(i是虛數(shù)單位,m∈R),且$\overline z•(3+i)$為純虛數(shù)($\overline z$是z的共軛復(fù)數(shù)).
(Ⅰ)設(shè)復(fù)數(shù)${z_1}=\frac{m+2i}{1-i}$,求|z1|;
(Ⅱ)設(shè)復(fù)數(shù)${z_2}=\frac{{a-{i^{2017}}}}{z}$,且復(fù)數(shù)z2所對應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.把5名人大代表派到3個城市作黨的十八大宣講報告,每個城市至少派一名,則不同的分派方法有( 。
A.150種B.90種C.60種D.180種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)非空集合S={x|m≤x≤l}滿足:當(dāng)x∈S時,有x2∈S.給出以下三個命題:①若m=1,則S={1};②若$m=-\frac{1}{2}$,則$\frac{1}{4}≤l≤1$;③若$l=\frac{1}{2}$,則$-\frac{{\sqrt{2}}}{2}≤m≤0$.其中正確的命題個數(shù)是( 。
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.汽車從甲地勻速行駛到乙地運(yùn)輸,汽車速度不得超過80km/h,已知汽車每小時的運(yùn)輸成本(單位:元)由可變部分和固定部分組成:可變部分與速度v(單位:km/h)的平方成正比,比例系數(shù)為0.1;固定部分為160元,為了使全程運(yùn)輸成本最小,汽車的速度為40km/h.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)的展開式中,含x7的項的系數(shù)是-36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(1,1).若向量$\overrightarrow$⊥($\overrightarrow{a}$+λ$\overrightarrow$),則實(shí)數(shù)λ的值是-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在正方體ABCD-A1B1C1D1中,M、N、P分別是AD1、BD和B1C的中點(diǎn).
(1)求證:平面MNP∥平面CC1D1D.
(2)求二面角N-B1C-B的正切值.

查看答案和解析>>

同步練習(xí)冊答案