7.若x、y滿足$\left\{\begin{array}{l}x+y-2≥0\\ kx-y+2≥0\\ y≥0\end{array}\right.$,且z=y-x的最小值為-6,則k的值為( 。
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.

解答 解:由z=y-x得y=x+z,
作出不等式組$\left\{\begin{array}{l}x+y-2≥0\\ kx-y+2≥0\\ y≥0\end{array}\right.$對應(yīng)的平面區(qū)域如圖:
平移直線y=x+z由圖象可知當(dāng)直線y=x+z經(jīng)過點(diǎn)A時(shí),直線y=x+z的截距最小,
此時(shí)最小值為-6,即y-x=-6,則x-y-6=0,
當(dāng)y=0時(shí),x=6,即A(2,0),
同時(shí)A也在直線kx-y+2=0上,代入解得k=-$\frac{1}{3}$,
故選:D.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.本題主要考查的難點(diǎn)在于對應(yīng)的區(qū)域?yàn)榫段.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$z=a+\sqrt{3}i$(a>0)且|z|=2,則$\overline z$=(  )
A.$1-\sqrt{3}i$B.$1+\sqrt{3}i$C.$2-\sqrt{3}i$D.$3+\sqrt{3}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知P是圓C:x2+y2=4上的動點(diǎn),P在x軸上的射影為P′,點(diǎn)M滿足$\overrightarrow{PM}$=$\overrightarrow{MP′}$,當(dāng)P在圓C上運(yùn)動時(shí),點(diǎn)M的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)經(jīng)過點(diǎn)A(0,2)的直線l與曲線E相交于點(diǎn)C,D,并且$\overrightarrow{AC}$=$\frac{3}{4}$$\overrightarrow{AD}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(x-2)lnx-ax+1.
(1)若f(x)在區(qū)間(1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若存在唯一整數(shù)x0,使得f(x0)<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知全集U=R,$A=\left\{{x\left|{-2<x<\frac{1}{2}}\right.}\right\},B=\left\{{x\left|{x≤0}\right.}\right\},C=\left\{{x\left|{x≥\frac{1}{2}}\right.}\right\}$,則集合C=(  )
A.A∩BB.U(A∩B)C.A∪(∁UB)D.U(A∪B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與x軸非負(fù)半軸重合,且取相同的長度單位.曲線C1:ρcosθ-2ρsinθ-7=0,和C2:$\left\{\begin{array}{l}x=8cosθ\\ y=3sinθ\end{array}\right.({θ為參數(shù)})$.
(1)寫出C1的直角坐標(biāo)方程和C2的普通方程;
(2)已知點(diǎn)P(-4,4),Q為C2上的動點(diǎn),求PQ中點(diǎn)M到曲線C1距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,S2=2,且an-Sn+1,λ+an+1(λ≠0),Sn+2成等差數(shù)列,則數(shù)列{${2}^{{a}_{n+2}-{a}_{n}}$}的前n項(xiàng)和Tn的表達(dá)式為$\frac{{{4^λ}({1-{4^{2nλ}}})}}{{1-{4^{2λ}}}}$.(用含有λ的式子表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,$\overline z$是復(fù)數(shù)z的共軛復(fù)數(shù),$\overline z+|z|•i=1+2i$,則z的虛部為( 。
A.$-\frac{3}{4}$B.$\frac{3}{4}$C.$-\frac{3}{4}i$D.$\frac{3}{4}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知關(guān)于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則$\frac{{a}^{2}+^{2}+1}{a+c}$(其中a+c≠0)的取值范圍為(-∞,-2$\sqrt{3}$]∪[2$\sqrt{3}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案