1.設(shè)n>1且為奇數(shù),證明:n|(1+$\frac{1}{2}$+…+$\frac{1}{n-1}$)(n-1)!

分析 利用數(shù)學(xué)歸納法即可證明.注意變形利用假設(shè)條件.

解答 證明:利用數(shù)學(xué)歸納法證明:
(1)當(dāng)n=3時,$(1+\frac{1}{2})×2!$=3,可以被3整除,因此成立.
(2)假設(shè)當(dāng)n=2k-1(k∈N*,k≥2)時,(1+$\frac{1}{2}$+…+$\frac{1}{2k-2}$)(2k-1)!=(2k-1)•m(m為正整數(shù)).
則n=2k+1時,(1+$\frac{1}{2}$+…+$\frac{1}{2k-2}$+$\frac{1}{2k-1}$+$\frac{1}{2k}$)(2k+2)!
=(1+$\frac{1}{2}$+…+$\frac{1}{2k-2}$)(2k+2)!+($\frac{1}{2k-1}$+$\frac{1}{2k}$)(2k+2)!=
=(2k-1)•m×2k(2k+1)(2k+2)+(2k-2)!(2k+1)(2k+2)
=(2k+1)•N,N=(2k-1)•m×2k×(2k+2)+(2k-2)!×(2k+2)為整數(shù).
上式能夠被奇數(shù)2k+1整除,因此n=2k+1時假設(shè)成立.
綜上可得:命題成立.

點評 本題考查了數(shù)學(xué)歸納法、階乘、整除的理論,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若命題p:?x∈(0,+∞),x+$\frac{1}{x}$≥1,命題q:?x0∈R,x${\;}_{0}^{2}$-x0+1≤0,則下列命題為真命題的是(  )
A.p∨qB.p∧qC.(¬p)∨qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在等差數(shù)列{an}中,a4=9,a7=3a2
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{$\frac{1}{a{{\;}_{n}a}_{n+1}}$}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,既是偶函數(shù)又在區(qū)間 (0,+∞)上單調(diào)遞減的是( 。
A.y=$\frac{1}{x}$B.y=e-xC.y=-x2+1D.y═lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC 中,a,b,c分別是內(nèi)角A,B,C的對邊,且acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3b}{2}$.
(Ⅰ)求證:a,b,c 成等差數(shù)列;
(Ⅱ)若B=$\frac{π}{3}$,b=4,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知曲線C1:y=sinx,C2:y=sin(2x+$\frac{2π}{3}$),則下面結(jié)論正確的是( 。
A.把C1上各點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向左平移$\frac{2π}{3}$個單位長度,得到曲線C2
B.把C1上各點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向左平移$\frac{π}{3}$個單位長度,得到曲線C2
C.把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移$\frac{2π}{3}$個單位長度,得到曲線C2
D.把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個$\frac{π}{3}$單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知{an}為等比數(shù)列,a4+a7=2,a2a9=-8,則a1+a10=( 。
A.7B.5C.-7D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知sin(30°+α)=$\frac{4}{5}$,60°<α<150°,則cosα=$\frac{4-3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知△ABC的面積為$\frac{\sqrt{3}}{2}$,$\overrightarrow{AB}$$•\overrightarrow{AC}$=-3,則A=$\frac{5π}{6}$.

查看答案和解析>>

同步練習(xí)冊答案