2.已知i是復(fù)數(shù)的虛數(shù)單位,若復(fù)數(shù)z(1+i)=|2i|,則復(fù)數(shù)z=(  )
A.1-iB.-1+iC.1+iD.i

分析 利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式即可得出.

解答 解:z(1+i)=|2i|,則復(fù)數(shù)z=$\frac{2}{1+i}$=$\frac{2(1-i)}{(1+i)(1-i)}$=1-i,
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知△ABC中,AD是BC邊上的中線,且cos∠BAC=$\frac{4}{5}$,cosC=$\frac{5}{13}$,BC=26.
(1)求AB的長(zhǎng);      
(2)求cosB;      
(3)求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.直線ax+2y+1=0和直線3x+(a-1)y+1=0平行,則a=(  )
A.-2B.2或-3C.3D.-2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.集合M={y|y=-x2,x∈R},N={x|x2+y2=2,x∈R},則M∩N=(  )
A.{(-1,-1),(1,-1)}B.{-1}C.[-1,0]D.[-$\sqrt{2}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如果你在海上航行,請(qǐng)?jiān)O(shè)計(jì)一種測(cè)量海上兩個(gè)小島之間距離的方法并作圖說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}1-|x+1|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞).\end{array}$
(1)求函數(shù)f(x)在[-2,4]上的解析式;
(2)若方程f(x)=x+a在區(qū)間[-2,4]內(nèi)有3個(gè)不等實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.關(guān)于函數(shù)f(x)=lg$\frac{{x}^{2}+1}{|x|}$有下列說(shuō)法:
(1)函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱;
(2)函數(shù)f(x)的最小值是lg2;
(3)當(dāng)x>0時(shí),f(x)是增函數(shù),當(dāng)x<0時(shí),f(x)是減函數(shù);
(4)f(x)在區(qū)間[-1,0),[1,+∞)上是增函數(shù);
(5)f(x)無(wú)最大值,也無(wú)最小值.
其中正確的命題序號(hào)是(1),(2),(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.三棱錐A-BCD內(nèi)接于半徑為$\sqrt{5}$的球O中,AB=CD=4,則三棱錐A-BCD的體積的最大值為( 。
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\frac{16}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,M在橢圓上,△MF1F2的周長(zhǎng)為$2\sqrt{5}+4$,面積的最大值為2.
(I)求橢圓C的方程;
(II)直線y=kx(k>0)與橢圓C交于A,B,連接AF2,BF2并延長(zhǎng)交橢圓C于D,E,連接DE.探索AB與DE的斜率之比是否為定值并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案