14.谷志偉,簡書兩位老師下棋,簡老師獲勝的概率是40%,谷老師不勝的概率為60%,則兩位老師下成和棋的概率為( 。
A.10%B.30%C.20%D.50%

分析 利用互斥事件概率加法公式求解.

解答 解:∵谷志偉,簡書兩位老師下棋,
簡老師獲勝的概率是40%,谷老師不勝的概率為60%,
∴兩位老師下成和棋的概率為:
p=60%-40%=20%.
故選:C.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意互斥事件概率加法公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(I)已知a+b+c=1,證明(a+1)2+(b+1)2+(c+1)2≥$\frac{16}{3}$;
(Ⅱ)若對任總實數(shù)x,不等式|x-a|+|2x-1|≥2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=x+2cos x在區(qū)間[-$\frac{π}{2}$,0]上的最小值是-$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}},x<1\\{log_3}x,x>1\end{array}\right.$.
(1)解方程:f(x)=2;
(2)解不等式:f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若$P(ξ=K)=\frac{1}{2^K}$,則$\frac{n!}{{3!({n-3})!}}$的值為( 。
A.1B.20C.35D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.從1,2,3中隨機選取一個數(shù)記為a,從2,3,4中隨機選取一個數(shù)記為b,則a+b>5的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)不等式x2-4mx+4m2+m+$\frac{1}{m-1}$>0的解集為R,則實數(shù)m的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知圓的方程是x2+y2=1,則經(jīng)過圓上一點M(1,0)的切線方程是(  )
A.x=1B.y=1C.x+y=1D.x-y=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.RAND(0,1)表示生成一個在(0,1)內(nèi)的隨機數(shù)(實數(shù)),若x=RAND(0,1),y=RAND(0,1),則x2+y2<1的概率為( 。
A.$\frac{π}{4}$B.$1-\frac{π}{4}$C.$\frac{π}{8}$D.$1-\frac{π}{8}$

查看答案和解析>>

同步練習(xí)冊答案