9.已知集合A={x|x2-x-6>0},B={x|1<x≤4},則(∁RA)∩B等于( 。
A.(1,2]B.(3,4]C.(1,3)D.(1,3]

分析 先求出集合A,B,再求出CRA,由此能求出(∁RA)∩B.

解答 解:∵集合A={x|x2-x-6>0}={x|x<-2或x>3},B={x|1<x≤4},
∴CRA={x|-2≤x≤3},
∴(∁RA)∩B={x|1<x≤3}=(1,3].
故選:D.

點評 本題考查補(bǔ)集、交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意補(bǔ)集、交集定義的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=ax3-3ax2-(x-3)ex+1在(0,2)內(nèi)有兩個極值點,則實數(shù)a的取值范圍為( 。
A.(-∞,$\frac{e}{3}}$)B.(${\frac{e}{3}$,e2C.(${\frac{e}{3}$,$\frac{e^2}{6}}$)D.(${\frac{e}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcos\frac{π}{4}}\\{y=tsin\frac{π}{4}}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為(1-sin2θ)•ρ=sinθ,以極點為坐標(biāo)原點,極軸為x的正方向建立平面直角坐標(biāo)系.
(Ⅰ)寫出直線l的極坐標(biāo)方程與曲線C的直角坐標(biāo)方程.
(Ⅱ)若點M的直角坐標(biāo)為(-1,0),直線l與曲線C交于A,B兩點,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.曲線y=ex上的點到直線y=x的距離最小值為( 。
A.$\frac{\sqrt{2}}{2}$B.1C.$\frac{\sqrt{2}}{2}$(e-1)D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),直線l的方程為$\sqrt{3}$x$+y-3\sqrt{3}$=0,以O(shè)為極點,x軸的正半軸為極軸,建立極坐標(biāo)系
(Ⅰ)求圓C和直線l的極坐標(biāo)方程
(Ⅱ)若射線OM:θ=$\frac{π}{3}$與圓C交于點O,P,與直線l交于點Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=$\left\{\begin{array}{l}{{log}_{\frac{1}{2}}x(x>0)}\\{|4x+1|(x≤0)}\end{array}\right.$,有f(a)=f(b)=f(c),a<b<c,則(a+b+c)c的取值范圍是( 。
A.[-$\frac{1}{16}$,$\frac{1}{2}$)B.[0,$\frac{1}{2}$)C.[-$\frac{1}{16}$,+∞)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=xlnx,g(x)=ax2-(2a-1)x,若f(x)-g(x)有極大值點x=1,則實數(shù)a的取值范圍( 。
A.a>$\frac{1}{2}$B.$\frac{1}{2}$<a<1C.a<$\frac{1}{2}$D.a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,角A,B,C的對邊分別是a,b,c,若$\frac{{\sqrt{3}a}}{sinA}=\frac{cosB}$,則B=( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若集合U={1,2,3,4,5,6,7,8},A={2,5,8},B={1,3,5,7},那么∁U(A∪B)等于( 。
A.{5}B.{1,3,7}C.{4,6}D.{1,2,3,4,6,7,8}

查看答案和解析>>

同步練習(xí)冊答案