18.已知向量$\overrightarrow{a}$=($\sqrt{2}$cosωx,1),$\overrightarrow$=(2sin(ωx+$\frac{π}{4}$),-1)(其中$\frac{1}{4}$≤ω≤$\frac{3}{2}$),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,且f(x)圖象的一條對稱軸為x=$\frac{5π}{8}$.
(1)求f($\frac{3}{4}$π)的值;
(2)若f($\frac{α}{2}-\frac{π}{8}$)=$\frac{{\sqrt{2}}}{3}$,f($\frac{β}{2}-\frac{π}{8}$)=$\frac{{2\sqrt{2}}}{3}$,且$α,β∈({-\frac{π}{2},\frac{π}{2}})$,求cos(α-β)的值.

分析 (1)根據(jù)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,利用向量的數(shù)量乘積的運算,求解f(x)的解析式,即可求f($\frac{3}{4}$π)的值;
(2)根據(jù)f($\frac{α}{2}-\frac{π}{8}$)=$\frac{{\sqrt{2}}}{3}$,f($\frac{β}{2}-\frac{π}{8}$)=$\frac{{2\sqrt{2}}}{3}$,求解sinα,cosα,cosβ,sinβ,利用和與差的公式即可求cos(α-β)的值.

解答 解:(1)∵向量$\overrightarrow{a}$=($\sqrt{2}$cosωx,1),$\overrightarrow$=(2sin(ωx+$\frac{π}{4}$),-1)
∴函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,=2cosωx(sinωx+cosωx)-1=2sinωxcosωx+2cos2ωx-1
=sin2ωx+cos2ωx=$\sqrt{2}$sin(2ωx+$\frac{π}{4}$),
∵f(x)圖象的一條對稱軸為x=$\frac{5π}{8}$.
∴2ω×$\frac{5π}{8}$+$\frac{π}{4}$=$\frac{π}{2}$+kπ,(k∈Z)
∴$ω=\frac{4}{5}({\frac{1}{4}+k})$(k∈Z)
又$\frac{1}{4}$≤ω≤$\frac{3}{2}$.
∴ω=1,
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)
∴f($\frac{3}{4}$π)=$\sqrt{2}$sin(2×$\frac{3}{4}$π+$\frac{π}{4}$)=-$\sqrt{2}$cos$\frac{π}{4}$=-1.
(2)∵f($\frac{α}{2}-\frac{π}{8}$)=$\frac{{\sqrt{2}}}{3}$,f($\frac{β}{2}-\frac{π}{8}$)=$\frac{{2\sqrt{2}}}{3}$
∴sinα=$\frac{1}{3}$,sinβ=$\frac{2}{3}$,
∵$α,β∈({-\frac{π}{2},\frac{π}{2}})$,
∴cosα=$\frac{2\sqrt{2}}{3}$,cosβ=$\frac{\sqrt{5}}{3}$,
∴cos(α-β)=cosαcosβ+sinαsinβ=$\frac{2\sqrt{10}+2}{9}$.

點評 本題考查了向量的數(shù)量乘積的運算和函數(shù)解析式的求法,和與差公式的運用.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U=R,集合A={x|x2-x-2≥0},B={x|log3x<1,則(∁UA)∩B=( 。
A.[2,3)B.[-1,2)C.(0,1)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$f(x)=\frac{1}{x+1}+2sinπx({-5≤x≤2且x≠-1})$的所有零點之和等于(  )
A.-10B.-8C.-6D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.過雙曲線E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右頂點A作斜率為-1的直線,該直線與E的漸近線交于B,C兩點,若$\overrightarrow{BC}+2\overrightarrow{BA}$=$\overrightarrow 0$,則雙曲線E的漸近線方程為( 。
A.y=±$\sqrt{3}$xB.y=±4xC.y=±$\sqrt{2}$xD.y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,∠A,∠B,∠C所對的邊分別是a,b,c.當(dāng)鈍角△ABC的三邊a,b,c是三個連續(xù)整數(shù)時,則△ABC外接圓的半徑為$\frac{{8\sqrt{15}}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.記sin(-80°)=k,那么tan100°=( 。
A.$\frac{{\sqrt{1-{k^2}}}}{k}$B.$-\frac{{\sqrt{1-{k^2}}}}{k}$C.$\frac{k}{{\sqrt{1-{k^2}}}}$D.$-\frac{k}{{\sqrt{1-{k^2}}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.扇形的周長是20,當(dāng)扇形的圓心角為2弧度時扇形的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對于不重合的直線m,l和平面α,β,要證α⊥β需具備的條件是(  )
A.m⊥l,m∥α,l∥βB.m⊥l,α∩β=m,l?αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m?α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定義在R上的函數(shù)f(x)滿足f(x)+f(-x)=2x2,且x∈[0,+∞)時f′(x)>2x恒成立,則不等式f(8-x)+16x<64+f(x)的解集為( 。
A.(4,+∞)B.(-∞,4)C.(8,+∞)D.(-∞,8)

查看答案和解析>>

同步練習(xí)冊答案