13.在△ABC中,∠A,∠B,∠C所對的邊分別是a,b,c.當(dāng)鈍角△ABC的三邊a,b,c是三個(gè)連續(xù)整數(shù)時(shí),則△ABC外接圓的半徑為$\frac{{8\sqrt{15}}}{15}$.

分析 由題意設(shè)出鈍角三角形的三邊長分別為x,x+1,x+2,可得出x+2所對的角為鈍角,設(shè)為α,利用余弦定理表示出cosα,將設(shè)出的三邊代入,根據(jù)cosα小于0,得出x的范圍,在范圍中找出整數(shù)x的值,確定出三角形的三邊長,進(jìn)而確定出cosα的值,利用同角三角函數(shù)間的基本關(guān)系求出sinα的值,利用正弦定理即可求出三角形ABC外接圓的半徑.

解答 解:由題意得:鈍角△ABC的三邊分別為x,x+1,x+2,且x+2所對的角為鈍角α,
∴由余弦定理得:cosα=$\frac{{x}^{2}+(x+1)^{2}-(x+2)^{2}}{2x(x+1)}$=$\frac{x-3}{2x}$<0,即x<3,
∴x=1或x=2,
當(dāng)x=1時(shí),三角形三邊分別為1,2,3,不能構(gòu)成三角形,舍去;
當(dāng)x=2時(shí),三角形三邊長分別為2,3,4,此時(shí)cosα=-$\frac{1}{4}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{\sqrt{15}}{4}$,
設(shè)△ABC外接圓的半徑為R,根據(jù)正弦定理得:$\frac{4}{\frac{\sqrt{15}}{4}}$=2R,
解得:R=$\frac{{8\sqrt{15}}}{15}$.
故答案為:$\frac{{8\sqrt{15}}}{15}$.

點(diǎn)評 此題考查了正弦、余弦定理,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握正弦、余弦定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.P是雙曲線$\frac{x^2}{64}-\frac{y^2}{36}=1$上一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),且|PF1|=15,則|PF2|的值是31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x|,g(x)=m-|x-3|.
(1)解關(guān)于的不等式g(f(x))+1-m>0;
(2)已知c>0,f(a)<c,f(b)<c,求證:$\frac{f(a+b)}{f({c}^{2}+ab)}$<$\frac{1}{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)(1+i)x=1+yi,x,y∈R,則|x+yi|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知tanθ=4,則$\frac{sinθ+cosθ}{17sinθ}+\frac{{si{n^2}θ}}{4}$的值為( 。
A.$\frac{14}{68}$B.$\frac{21}{68}$C.$\frac{68}{14}$D.$\frac{68}{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$=($\sqrt{2}$cosωx,1),$\overrightarrow$=(2sin(ωx+$\frac{π}{4}$),-1)(其中$\frac{1}{4}$≤ω≤$\frac{3}{2}$),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,且f(x)圖象的一條對稱軸為x=$\frac{5π}{8}$.
(1)求f($\frac{3}{4}$π)的值;
(2)若f($\frac{α}{2}-\frac{π}{8}$)=$\frac{{\sqrt{2}}}{3}$,f($\frac{β}{2}-\frac{π}{8}$)=$\frac{{2\sqrt{2}}}{3}$,且$α,β∈({-\frac{π}{2},\frac{π}{2}})$,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上是增函數(shù).令a=f(sin50°),b=f[cos(-50°)],c=f(-tan50°),則(  )
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x≥1}\\{x+c,x<1}\end{array}\right.$,則“c=-1”是“函數(shù)在R上單調(diào)遞增”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式與單調(diào)遞減區(qū)間;
(2)函數(shù)f(x)的圖象上所有點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍,再向右平移$\frac{π}{2}$個(gè)單位長度,得到g(x)的圖象,求函數(shù)y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

同步練習(xí)冊答案