A. | $\frac{14}{68}$ | B. | $\frac{21}{68}$ | C. | $\frac{68}{14}$ | D. | $\frac{68}{21}$ |
分析 利用同角三角函數(shù)間的基本關系化簡,把tanθ的值代入計算即可求出值.
解答 解:$\frac{sinθ+cosθ}{17sinθ}+\frac{{si{n^2}θ}}{4}$=$\frac{tanθ+1}{17tanθ}+\frac{si{n}^{2}θ}{4(si{n}^{2}θ+co{s}^{2}θ)}$
=$\frac{tanθ+1}{17tanθ}+\frac{ta{n}^{2}θ}{4(ta{n}^{2}θ+1)}$=$\frac{4+1}{68}+\frac{16}{68}=\frac{21}{68}$.
故選:B.
點評 本題考查了同角三角函數(shù)間基本關系的運用,熟練掌握基本關系是解本題的關鍵,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com