3.已知函數(shù)f(x)=2x+2,則f(2)的值為( 。
A.2B.3C.4D.6

分析 把x=2代入函數(shù)表達(dá)式,能求出f(2)的值.

解答 解:∵函數(shù)f(x)=2x+2,
∴f(2)=22+2=6.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)a∈R,若函數(shù)y=aex+3x有大于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍是(-3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).當(dāng)|OP|=|OM|時(shí),則直線l的斜率(  )
A.k=3B.k=-3C.k=$\frac{1}{3}$D.k=-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.點(diǎn)M是拋物線x2=2py(p>0)的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)F為拋物線的焦點(diǎn),P在拋物線上,在△PFM中,sin∠PFM=λsin∠PMF,則λ的最大值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.空間中兩點(diǎn)A(3,-2,5),B(6,0,-1)之間的距離為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知tanθ=4,則$\frac{sinθ+cosθ}{17sinθ}+\frac{{si{n^2}θ}}{4}$的值為( 。
A.$\frac{14}{68}$B.$\frac{21}{68}$C.$\frac{68}{14}$D.$\frac{68}{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|
(1)當(dāng)a=2時(shí),求滿足f(x)≥g(2)的x的值.
(2)當(dāng)x∈R時(shí),恒有f(x)+g(x)≥3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$,則f(x)的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)y=sin(2x+φ)+1的圖象關(guān)于直線$x=-\frac{π}{8}$對(duì)稱,則φ的可能取值是(  )
A.$\frac{3π}{4}$B.$-\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊答案