15.已知函數(shù)f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|
(1)當(dāng)a=2時(shí),求滿足f(x)≥g(2)的x的值.
(2)當(dāng)x∈R時(shí),恒有f(x)+g(x)≥3,求a的取值范圍.

分析 (1)根據(jù)絕對(duì)值的性質(zhì)得到關(guān)于x的不等式,解出即可;
(2)根據(jù)絕對(duì)值的性質(zhì)得到關(guān)于a的不等式,求出a的范圍即可.

解答 解:(1)∵|2x-2|+2≥|2×2-1|=3,∴|2x-2|≥1,
2x-2≥1或2x-2≤-1,∴x≥$\frac{3}{2}$或x≤$\frac{1}{2}$;
(2)f(x)+g(x)=|2x-a|+|2x-1|+a≥|2x-a-2x+1|+a=|a-1|+a,
當(dāng)且僅當(dāng)(2x-a)(2x-1)≤0時(shí)”=“成立,
∴|a-1|+a≥3恒成立,
∴a≥2,
則a的取值范圍是[2,+∞).

點(diǎn)評(píng) 本題考查了絕對(duì)值的性質(zhì),考查解絕對(duì)值不等式問題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,滿足an2=Sn+Sn-1(n≥2),a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(1-an2-a(1-an),若bn+1>bn對(duì)任意n∈N*恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x3+ax2+1(a∈R),試討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=2x+2,則f(2)的值為(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=|tan x|的周期為( 。
A.$\frac{π}{2}$B.ΠC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)$y=lg(x-2)+\sqrt{3-x}$,則其定義域?yàn)椋?,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)z1=-2-i,z2=i,i是虛數(shù)單位,則復(fù)數(shù)z1-2z2的值是( 。
A.-1+2iB.1-2iC.1+2iD.-2-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若雙曲線E:$\frac{x^2}{9}-\frac{y^2}{16}=1$的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線E上,且|PF1|=7,則|PF2|等于( 。
A.1B.13C.1或13D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)P(tanα,sinα-cosα)在第一象限,且0≤α≤2π,則角α的取值范圍是$(\frac{π}{4},\frac{π}{2})∪(π,\frac{5π}{4})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案