9.函數(shù)$f(x)=\frac{1}{x+1}+2sinπx({-5≤x≤2且x≠-1})$的所有零點(diǎn)之和等于( 。
A.-10B.-8C.-6D.-4

分析 把函數(shù)$f(x)=\frac{1}{x+1}+2sinπx({-5≤x≤2且x≠-1})$的零點(diǎn)轉(zhuǎn)化為g(x)=$\frac{1}{x+1}$與h(x)=-2sinπx的交點(diǎn)橫坐標(biāo),畫出圖形,數(shù)形結(jié)合得答案.

解答 解:函數(shù)$f(x)=\frac{1}{x+1}+2sinπx({-5≤x≤2且x≠-1})$的零點(diǎn),就是方程$\frac{1}{x+1}+2sinπx=0(-5≤x≤2且x≠-1)$的根,
即方程$\frac{1}{x+1}=-2sinπx$的根,
令g(x)=$\frac{1}{x+1}$,h(x)=-2sinπx,
作出兩個函數(shù)的圖象如圖:

由圖可知,g(x)=$\frac{1}{x+1}$與h(x)=-2sinπx的交點(diǎn)個數(shù)為8個,
由對稱性可知,函數(shù)$f(x)=\frac{1}{x+1}+2sinπx({-5≤x≤2且x≠-1})$的所有零點(diǎn)之和為-2×4=-8.
故選:B.

點(diǎn)評 本題考查根的存在性與根的個數(shù)判斷,考查數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,已知B=45°,b=2.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=$\left\{\begin{array}{l}lg|x-2|(x≠2)\\ 1(x=2)\end{array}\right.$若關(guān)于x的方程[f(x)]2+b•f(x)+c=0恰有5個不同的實(shí)數(shù)解x1、x2、x3、x4、x5,則f(x1+x2+x3+x4+x5)等于(  )
A.0B.1C.lg4D.3lg2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知焦點(diǎn)在x軸上的橢圓E:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{^{2}}$=1(b>0)
(1)若0<b≤2,求離心率e的取值范圍;
(2)橢圓E內(nèi)含圓C:x2+y2=$\frac{8}{3}$.圓C的切線l與橢圓E交于A,B兩點(diǎn),滿足$\overrightarrow{OA}⊥\overrightarrow{OB}$(O為坐標(biāo)原點(diǎn)).
①求b2的值;
②求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x|,g(x)=m-|x-3|.
(1)解關(guān)于的不等式g(f(x))+1-m>0;
(2)已知c>0,f(a)<c,f(b)<c,求證:$\frac{f(a+b)}{f({c}^{2}+ab)}$<$\frac{1}{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.等腰直角三角形的直角邊長為1,則繞直角邊旋轉(zhuǎn)一周所形成的幾何體的體積為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)(1+i)x=1+yi,x,y∈R,則|x+yi|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$=($\sqrt{2}$cosωx,1),$\overrightarrow$=(2sin(ωx+$\frac{π}{4}$),-1)(其中$\frac{1}{4}$≤ω≤$\frac{3}{2}$),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,且f(x)圖象的一條對稱軸為x=$\frac{5π}{8}$.
(1)求f($\frac{3}{4}$π)的值;
(2)若f($\frac{α}{2}-\frac{π}{8}$)=$\frac{{\sqrt{2}}}{3}$,f($\frac{β}{2}-\frac{π}{8}$)=$\frac{{2\sqrt{2}}}{3}$,且$α,β∈({-\frac{π}{2},\frac{π}{2}})$,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)α為第二象限角,則$\frac{sinα}{cosα}$•$\sqrt{\frac{1}{si{n}^{2}a}-1}$=-1.

查看答案和解析>>

同步練習(xí)冊答案