分析 利用通項(xiàng)公式及其性質(zhì)即可得出.
解答 解:二項(xiàng)式${(\sqrt{x}+\frac{1}{{2\sqrt{x}}})^n}$的展開(kāi)式中,第三項(xiàng)系數(shù)$\frac{n(n-1)}{8}$,
再根據(jù)已知第三項(xiàng)系數(shù)為n-1,可得$n-1=\frac{n(n-1)}{8}$,
求得n=8或n=1(舍去).
故二項(xiàng)式${(\sqrt{x}+\frac{1}{{2\sqrt{x}}})^n}$的展開(kāi)式的通項(xiàng)公式為T(mén)r+1=${∁}_{8}^{r}$$(\frac{1}{2})^{r}$x4-r,
設(shè)第r+1項(xiàng)的系數(shù)最大,則由$\left\{\begin{array}{l}C_8^r•{(\frac{1}{2})^r}≥C_8^{r+1}•{(\frac{1}{2})^{r+1}}\\ C_8^r•{(\frac{1}{2})^r}≥C_8^{r-1}•{(\frac{1}{2})^{r-1}}\end{array}\right.$解得2≤r≤3,
因?yàn)閞∈Z,所以r=2或r=3,
故第三項(xiàng)或第四項(xiàng)的系數(shù)最大,
再利用通項(xiàng)公式可得系數(shù)最大的項(xiàng)為${T_3}=7{x^2}$,T4=7x.
點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的性質(zhì)及其應(yīng)用、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
男 | 女 | |
文科 | 2 | 5 |
理科 | 10 | 3 |
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 8 | C. | 4$\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{24}{25}$ | B. | $\frac{1}{5}$ | C. | -$\frac{1}{5}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{3}$<a<1 | B. | a>1或a$<-\frac{1}{3}$ | C. | -1$<a<\frac{1}{3}$ | D. | a$>\frac{1}{3}$或a<-1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com