9.若△ABC的內(nèi)角A,B,C所對的邊a、b、c滿足(a+b)2=10+c2,且cosC=$\frac{2}{3}$,則a2+b2的最小值為6.

分析 由已知可得a2+b2-c2=10-2ab,利用余弦定理可得cosC=$\frac{10-2ab}{2ab}$=$\frac{2}{3}$,解得:ab=3,利用基本不等式即可計算得解.

解答 解:∵(a+b)2=10+c2,且cosC=$\frac{2}{3}$,
∴由已知可得:a2+b2-c2=10-2ab,
又∵cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{10-2ab}{2ab}$=$\frac{2}{3}$,
∴解得:ab=3,
∴a2+b2≥2ab=6.
故答案為:6.

點評 本題主要考查了余弦定理,基本不等式在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.極坐標方程ρ(cos2θ-sin2θ)=0表示的曲線為( 。
A.極軸B.一條直線C.雙曲線D.兩條相交直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在正六邊形ABCDEF中,若AB=1,則$\overrightarrow{AB}•\overrightarrow{CA}+\overrightarrow{AB}•\overrightarrow{AD}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知雙曲線Γ1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓Γ2:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{6}$=1的離心率為e,直線MN過F2與雙曲線交于M,N兩點,若cos∠F1MN=cos∠F1F2M,$\frac{|{F}_{1}M|}{|{F}_{1}N|}$=e,則雙曲線Γ1的兩條漸近線的傾斜角分別為(  )
A.30°或150°B.45°或135°C.60°或120°D.15°或165°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.用斜二測畫法得到一個水平放置的平面圖形的直觀圖為如圖所示的直角梯形,其中梯形的上底是下底的$\frac{1}{2}$,若原平面圖形的面積為3$\sqrt{2}$,則OA的長為(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在二項式${(\sqrt{x}+\frac{1}{{2\sqrt{x}}})^n}$的展開式中,第三項系數(shù)為n-1,求展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)復(fù)數(shù)z=-7+5i(是虛數(shù)單位),z的共軛復(fù)數(shù)為$\overline{z}$,則復(fù)數(shù)(6+z)•$\overline{z}$的虛部為( 。
A.-30B.30C.32D.-32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.下列四個命題:
①若△ABC的面積為$\frac{\sqrt{3}}{2}$,c=2,A=60°,則a的值為$\sqrt{3}$;
②等差數(shù)列{an}中,a1=2,a1,a3,a4成等比數(shù)列,則公差為-$\frac{1}{2}$;
③已知a>0,b>0,a+b=1,則$\frac{2}{a}$+$\frac{3}$的最小值為5+2$\sqrt{6}$;
④在△ABC中,若sin2A<sin2B+sin2C,則△ABC為銳角三角形.
其中正確命題的序號是①③  .(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),過C上一點$({2\sqrt{2},\sqrt{2}})$的切線l的方程為x+2y-4$\sqrt{2}$=0.
(1)求橢圓C的方程.
(2)設(shè)過點M(0,1)且斜率不為0的直線交橢圓于A,B兩點,試問y軸上是否存在點P,使得$\overrightarrow{PM}=λ(\frac{{\overrightarrow{PA}}}{{|{\overrightarrow{PA}}|}}+\frac{{\overrightarrow{PB}}}{{|{\overrightarrow{PB}}|}})$?若存在,求出點P的坐標;若不存在說明理由.

查看答案和解析>>

同步練習冊答案