6.若實數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=3x-y,則z的最大值為9.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=3x-y得y=3x-z,
平移直線y=3x-z由圖象可知
當直線y=3x-z經(jīng)過點D(3,0)時,直線y=3x-z的截距最小,
此時z最大.
此時z=3×3=9,
故答案為:9

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,BC邊上的高所在直線的方程為x-2y+1=0,∠A的平分線所在直線方程為y=0,若點B的坐標為(1,2).
(1)求點A和點C的坐標;
(2)求AC邊上的高所在的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知雙曲線Γ1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓Γ2:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{6}$=1的離心率為e,直線MN過F2與雙曲線交于M,N兩點,若cos∠F1MN=cos∠F1F2M,$\frac{|{F}_{1}M|}{|{F}_{1}N|}$=e,則雙曲線Γ1的兩條漸近線的傾斜角分別為(  )
A.30°或150°B.45°或135°C.60°或120°D.15°或165°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在二項式${(\sqrt{x}+\frac{1}{{2\sqrt{x}}})^n}$的展開式中,第三項系數(shù)為n-1,求展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)復數(shù)z=-7+5i(是虛數(shù)單位),z的共軛復數(shù)為$\overline{z}$,則復數(shù)(6+z)•$\overline{z}$的虛部為( 。
A.-30B.30C.32D.-32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若以橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的右頂點為圓心的圓與直線x+$\sqrt{3}$y+2=0相切,則該圓的標準方程是(x-2)2+y2=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.下列四個命題:
①若△ABC的面積為$\frac{\sqrt{3}}{2}$,c=2,A=60°,則a的值為$\sqrt{3}$;
②等差數(shù)列{an}中,a1=2,a1,a3,a4成等比數(shù)列,則公差為-$\frac{1}{2}$;
③已知a>0,b>0,a+b=1,則$\frac{2}{a}$+$\frac{3}$的最小值為5+2$\sqrt{6}$;
④在△ABC中,若sin2A<sin2B+sin2C,則△ABC為銳角三角形.
其中正確命題的序號是①③  .(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若變量x,y滿足$\left\{\begin{array}{l}x-y+1≤0\\ x+y-5≤0\\ x≥0\end{array}\right.$,則點P(x,y)表示的區(qū)域的面積為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{{e}^{x}}{x}$-a(x-lnx).
(1)當a=1時,試求f(x)在(1,f(1))處的切線方程;
(2)當a≤0時,試求f(x)的單調(diào)區(qū)間;
(3)若f(x)在(0,1)內(nèi)有極值,試求a的取值范圍.

查看答案和解析>>

同步練習冊答案