分析 根據(jù)點P在直線3x-4y+3=0上,設(shè)P(x,$\frac{3x+3}{4}$),求出$\overrightarrow{AP}$、$\overrightarrow{BP}$,計算$\overrightarrow{AP}$•$\overrightarrow{BP}$,代入$\overrightarrow{AP}$•$\overrightarrow{BP}$+2λ=0,化簡并利用△>0求出λ的取值范圍.
解答 解:由點P在直線3x-4y+3=0上,設(shè)P(x,$\frac{3x+3}{4}$),
則$\overrightarrow{AP}$=(x-2,$\frac{3x+3}{4}$-3),$\overrightarrow{BP}$=(x-6,$\frac{3x+3}{4}$+3),
∴$\overrightarrow{AP}$•$\overrightarrow{BP}$=(x-2)(x-6)+${(\frac{3x+3}{4})}^{2}$-9=$\frac{1}{16}$(25x2-110x+57);
又$\overrightarrow{AP}$•$\overrightarrow{BP}$+2λ=0,
∴$\frac{1}{16}$(25x2-110x+57)+2λ=0,
化簡得25x2-110x+57+32λ=0,
根據(jù)題意△=(-110)2-4×25×(57+32λ)>0,
解得λ<2;
∴實數(shù)λ的取值范圍是(-∞,2).
故答案為:(-∞,2).
點評 本題考查了平面向量的數(shù)量積與判別式的應(yīng)用問題,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{7}$ | C. | 3 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,1)∪[4,7) | B. | (-2,1]∪[4,7] | C. | (-2,1]∪(4,7) | D. | (-2,1]∪[4,7) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com