9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,若函數(shù)y=f(x)+f(1-x)-m恰有4個(gè)零點(diǎn),則m的取值范圍是( 。
A.($\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$)C.(0,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

分析 求出f(x)+f(1-x)的解析式,做出y=f(x)+f(1-x)的函數(shù)圖象,根據(jù)函數(shù)圖象得出答案.

解答 解:f(x)=$\left\{\begin{array}{l}{1-x,0≤x≤1}\\{1+x,x<0}\\{(x-1)^{2},x>1}\end{array}\right.$,∴f(1-x)=$\left\{\begin{array}{l}{x,0≤x≤1}\\{2-x,x>1}\\{{x}^{2},x<0}\end{array}\right.$.
令y=f(x)+f(1-x)-m=0得m=f(x)+f(-x),
令g(x)=f(x)+f(1-x)=$\left\{\begin{array}{l}{1,0≤x≤1}\\{{x}^{2}+x+1,x<0}\\{{x}^{2}-3x+3,x>1}\end{array}\right.$,
做出g(x)的函數(shù)圖象如圖所示:

∵y=f(x)+f(1-x)-m恰有4個(gè)零點(diǎn),
∴$\frac{3}{4}$<m<1.
故選:D.

點(diǎn)評 本題考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,分段函數(shù)函數(shù)的圖象,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}\right.$($θ∈[{-\frac{π}{2},\frac{π}{2}}]$,θ為參數(shù))若以坐標(biāo)系原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$θ=\frac{π}{4}$(ρ∈R).
(Ⅰ)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(Ⅱ)將曲線C2向下平移m(m>0)個(gè)單位后得到的曲線恰與曲線C1有兩個(gè)公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2cosθ,過點(diǎn)p(-3,-5)的直線$l:\left\{{\begin{array}{l}{x=-3+\frac{{\sqrt{2}}}{2}t}\\{y=-5+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù))與曲線C相交于點(diǎn)M,N兩點(diǎn).
(1)求曲線C的平面直角坐標(biāo)系方程和直線l的普通方程;
(2)求$\frac{1}{{|{PM}|}}+\frac{1}{{|{PN}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時(shí),發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,8,13,….該數(shù)列的特點(diǎn)是:前兩個(gè)數(shù)都是1,從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和,人們把這樣的一列數(shù)所組成的數(shù)列{an}稱為“斐波那契數(shù)列”,則(a1a3-a${\;}_{2}^{2}$)(a2a4-a${\;}_{3}^{2}$)(a3a5-a${\;}_{4}^{2}$)…(a2015a2017-a${\;}_{2016}^{2}$)=( 。
A.1B.-1C.2017D.-2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2e-ax,其中a>0.(e是自然對數(shù)的底數(shù),e=2.71828…)
(I)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在[1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)復(fù)數(shù)z=$\frac{2+i}{(1+i)^{2}}$(i為虛數(shù)單位),則z的虛部是( 。
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|-5≤x≤3},B={x|m+1<x<2m+3}且B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)條件p:x>0,條件q:x>1,則條件p是條件q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知A、B為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$和雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的公共頂點(diǎn),P、Q分別為雙曲線和橢圓上不同于A、B的動(dòng)點(diǎn),且$\overrightarrow{AP}$+$\overrightarrow{BP}$=λ($\overrightarrow{AQ}$+$\overrightarrow{BQ}$)(λ∈R,|λ|>1).設(shè)AP、BP、AQ、BQ的斜率分別為k1、k2、k3、k4
(1)求證:點(diǎn)P,Q,O三點(diǎn)共線;
(2)求k1+k2+k3+k4的值;
(3)設(shè)F1、F2分別為雙曲線和橢圓的右焦點(diǎn),若QF1∥PF2,求k12+k22+k32+k42的值.

查看答案和解析>>

同步練習(xí)冊答案