14.設(shè)復(fù)數(shù)z=$\frac{2+i}{(1+i)^{2}}$(i為虛數(shù)單位),則z的虛部是(  )
A.-1B.1C.-iD.i

分析 利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.

解答 解:復(fù)數(shù)z=$\frac{2+i}{(1+i)^{2}}$=$\frac{2+i}{2i}$=$\frac{(2+i)(-i)}{2i(-i)}$=$\frac{-2i+1}{2}$=$\frac{1}{2}$-i,則z的虛部是-1.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若α∈(0,$\frac{π}{2}$),且cos2α=$\frac{{2\sqrt{5}}}{5}$sin(α+$\frac{π}{4}$),則tanα=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(Ⅰ)若關(guān)于x的不等式|x+1|-|x-2|>|a-3|的解集是空集,求實(shí)數(shù)a的取值范圍;
(Ⅱ)對(duì)任意正實(shí)數(shù)x,y,不等式$\sqrt{2x}$+$\sqrt{3y}$<k$\sqrt{8x+6y}$恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某品牌汽車4S店對(duì)最近100位采用分期付款的購(gòu)車者進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如表所示:
付款方式分1期分2期分3期分4期分5期
頻數(shù)4020a10b
已知分3期付款的頻率為0.2,4S店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤(rùn)為1萬元;分2期或3期付款,其利潤(rùn)為1.5萬元;分4期或5期付款,其利潤(rùn)為2萬元,用Y表示經(jīng)銷一輛汽車的利潤(rùn).
(1)求上表中a,b的值;
(2)若以頻率作為概率,求事件A:“購(gòu)買該品牌的3位顧客中,至多有一位采用分3期付款”的概率P(A);
(3)求Y的分布列及數(shù)學(xué)期望EY.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,若函數(shù)y=f(x)+f(1-x)-m恰有4個(gè)零點(diǎn),則m的取值范圍是(  )
A.($\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$)C.(0,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;\;\;(a>b>0)$,其離心率為$\frac{{\sqrt{3}}}{3}$,點(diǎn)F是其一個(gè)焦點(diǎn),P 為橢圓上一點(diǎn),|PF|的最小值為$\sqrt{3}-1$,直線l:y=m(x-1).
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)證明:直線l與橢圓C總有兩個(gè)不同的交點(diǎn);
(3)設(shè)直線l與橢圓C交于A、B兩點(diǎn),是否存在實(shí)數(shù)m,使得以線段AB為直徑的圓過坐標(biāo)原點(diǎn)?若存在,求實(shí)數(shù)m的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.計(jì)算:
(1)$sin(-\frac{14}{3}π)+cos\frac{20}{3}π+tan(-\frac{53}{6}π)$
(2)tan675°-sin(-330°)-cos960°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.橢圓滿足這樣的光學(xué)性質(zhì):從橢圓的一個(gè)焦點(diǎn)發(fā)射光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個(gè)焦點(diǎn).現(xiàn)在設(shè)有一個(gè)水平放置的橢圓形臺(tái)球盤,滿足方程:$\frac{x^2}{16}+\frac{y^2}{9}$=1,點(diǎn)A,B是它的兩個(gè)焦點(diǎn),當(dāng)靜止的小球放在點(diǎn)A處,從A點(diǎn)沿直線出發(fā),經(jīng)橢圓壁反彈后,再回到點(diǎn)A時(shí),小球經(jīng)過的最長(zhǎng)路程是(  )
A.20B.18C.16D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若log2(a+3)+log2(a-1)=5,則a=5.

查看答案和解析>>

同步練習(xí)冊(cè)答案