分析 圓心C(2,2)到直線l的距離d=3$\sqrt{2}$,O到直線l的距離h=$\sqrt{2}$,當(dāng)C、P、O、Q共線,且OQ⊥l時(shí),$|\overrightarrow{OP}-\overrightarrow{OQ}|$取最小值.
解答 解:P為圓C:(x-2)2+(y-2)2=1上任一點(diǎn),Q為直線l:x+y+2=0上任一點(diǎn),O為原點(diǎn),
圓心C(2,2)到直線l的距離d=$\frac{|2+2+2|}{\sqrt{2}}$=3$\sqrt{2}$,
O到直線l的距離h=$\frac{|0+0+2|}{\sqrt{2}}$=$\sqrt{2}$,
如圖,當(dāng)C、P、O、Q共線,且OQ⊥l時(shí),
|OQ|=$\sqrt{2}$,|OP|=3$\sqrt{2}-\sqrt{2}-1$=2$\sqrt{2}-1$,
此時(shí)$|\overrightarrow{OP}-\overrightarrow{OQ}|$取最小值為|2$\sqrt{2}-1-\sqrt{2}$|=$\sqrt{2}-1$.
故答案為:$\sqrt{2}-1$.
點(diǎn)評(píng) 本題考查向量的模的最小值的求法,考查圓、直線方程、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x+2)2+y2=16 | B. | (x+2)2+y2=20 | C. | (x+2)2+y2=25 | D. | (x+2)2+y2=36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 過(guò)圓心 | B. | 相切 | C. | 相離 | D. | 相交 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$) | B. | ($0,\frac{{\sqrt{15}}}{3}$) | C. | ($-\frac{{\sqrt{15}}}{3},0$) | D. | ($-\frac{{\sqrt{15}}}{3},-1$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4,9,14 | B. | 4,6,12 | C. | 2,11,20 | D. | 3,13,23 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com