3.兩條平行直線3x+4y=0與3x+4y-5=0的距離為1.

分析 直接利用平行線之間的距離公式求解即可.

解答 解:兩條平行直線3x+4y=0與3x+4y-5=0的距離:$\frac{|0+5|}{\sqrt{{3}^{2}+{4}^{2}}}$=1.
故答案為:1.

點評 本題考查平行線之間的距離公式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示將若干個點擺成三角形圖案,每條邊(包括兩個端點)有n(n>1,n∈N*)個點,相應(yīng)的圖案中總的點數(shù)記為an,則$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2016}{a}_{2017}}$=( 。
A.$\frac{2016}{2017}$B.$\frac{2017}{2016}$C.$\frac{2015}{2016}$D.$\frac{2016}{2015}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在用反證法證明“自然數(shù)m,n,k中恰有一個奇數(shù)”時,正確的反設(shè)是( 。
A.m,n,k都是奇數(shù)B.m,n,k都是偶數(shù)
C.m,n,k中至少有兩個偶數(shù)D.m,n,k都是偶數(shù)或至少有兩個奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某校高三(1)班共有48人,學(xué)號依次為1,2,3,…,48,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個容量為6的樣本.已知學(xué)號為3,11,19,35,43的同學(xué)在樣本中,那么還有一個同學(xué)的學(xué)號應(yīng)為27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+(a+3)x+b在R上不是單調(diào)函數(shù),則實數(shù)a的取值范圍是(  )
A.-2≤a≤6B.a≤-2或a≥6C.-2<a<6D.a<-2或a>6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=xlnx+a.
(1)若對定義域內(nèi)任意x,f(x)>0成立,求實數(shù)a的取值范圍;
(2)若0<x1<x2,求證:對?x∈(x1,x2),不等式$\frac{f(x)-f({x}_{1})}{x-{x}_{1}}$<$\frac{f(x)-f({x}_{2})}{x-{x}_{2}}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,已知a=5,b=4,cos(A-B)=$\frac{31}{32}$,則cosC=$\frac{1}{8}$,AB=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A、B、C的對邊分別為a,b,c,且bcosC=(2a-c)cosB.
(1)求角B的大小;
(2)若不等式${x^2}-\sqrt{6}x+1<0$的解集是{x|a<x<c},求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某2017年夏令營組織5名營業(yè)員參觀北京大學(xué)、清華大學(xué)等五所大學(xué),要求每人任選一所大學(xué)參觀,則有且只有兩個人選擇北京大學(xué)的不同方案共有( 。
A.240種B.480種C.640種D.1280種

查看答案和解析>>

同步練習(xí)冊答案