分析 欲求切線斜率,只須先利用導(dǎo)數(shù)求出在x=2處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問(wèn)題解決.
解答 解:依題意得y′=6x2-1,
函數(shù)y=2x3-x+4在點(diǎn)(-$\frac{1}{2}$,$\frac{17}{4}$)處的切線的斜率為6×($\frac{1}{2}$)2-1=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.
點(diǎn)評(píng) 本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=tanx | B. | y=-x3-3x | C. | y=|sinx| | D. | y=$\frac{1}{x+1}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2-21-n | B. | 2n-1-1 | C. | 2n-1 | D. | 2-2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 橫坐標(biāo)變?yōu)樵瓉?lái)的一半,縱坐標(biāo)不變,再向左平移$\frac{π}{6}$個(gè)單位 | |
B. | 橫坐標(biāo)變?yōu)樵瓉?lái)的兩倍,縱坐標(biāo)不變,再向左平移$\frac{π}{12}$個(gè)單位 | |
C. | 向左平移$\frac{π}{12}$個(gè)單位,再將所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的兩倍,縱坐標(biāo)不變 | |
D. | 向左平移$\frac{π}{6}$個(gè)單位,再將所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的一半,縱坐標(biāo)不變 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-3,2)\;\;\;\;\;\;\;\sqrt{13}$ | B. | $(3,-2)\;\;\;\;\;\;\;\sqrt{13}$ | C. | (-3,2)4 | D. | (3,-2)4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com