已知函數(shù)f(x)=(x2-2x)lnx+ax2+2.當a=-1時,求函數(shù)f(x)在(1,f(1))處的切線方程.
考點:利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的概念及應用
分析:當a=-1時,函數(shù)f(x)=(x2-2x)lnx+ax2+2=(x2-2x)lnx-x2+2,求出f′(x),則k=f′(1),代入直線方程的點斜式可得切線的方程.
解答: 解:當a=-1時,函數(shù)f(x)=(x2-2x)lnx+ax2+2=(x2-2x)lnx-x2+2,
∴f′(x)=(2x-2)lnx+(x2-2x)
1
x
-2x,
k=f′(1)=0+(1-2)-2=-3,
f(1)=1,
切線的方程為y-1=-3(x-1),
∴切線的方程為3x+y-4=0.
點評:本題主要考查導數(shù)的幾何意義,即函數(shù)在一點處的導數(shù)等于過此點的切線的斜率,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

等差列數(shù){an}中,3a1+2a5=21,2a4=a3+a6-2,其前n項和為Sn
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=
1
Sn+1-1
,其前n項和為Tn,求證:Tn
3
4
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a-3
a
+1=0(a>1),求
a
1
2
-a-
1
2
a
1
4
+a-
1
4
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列命題:
①雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點;
②“-
1
2
<x<0”是“2x2-5x-3<0”必要不充分條件;
③若
a
b
共線,則
a
b
所在的直線平行;
④?x∈R,x2-3x+3≠0.
其中是真命題的有:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中正確的是( 。
A、一直線與一平面平行,這個平面內(nèi)有無數(shù)條直線與它平行
B、平行于同一直線的兩個平面平行
C、與兩相交平面的交線平行的直線必平行于這兩個相交平面
D、兩條平行直線中的一條與一個平面平行,則另一條也與該平面平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某單位設計一個展覽沙盤,現(xiàn)欲在沙盤平面內(nèi),鋪設一個對角線在L上的四邊形電氣線路,如圖所示.為充分利用現(xiàn)有材料,邊BC,CD用一根5米長的材料彎折而成,邊BA,AD用一根9米長的材料彎折而成,使A+C=180°,且AB=BC.設AB=x米,cos A=f(x).
(1)求f(x)的解析式,并指出x的取值范圍;
(2)求y=
sinA
AB
的最大值,并指出相應的x值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體的外接球與其內(nèi)切球的體積之比為    (  )
A、
3
:1
B、3:1
C、3
3
:1
D、9:1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)定義域為R,其圖象是連續(xù)不斷的,若存在非零實數(shù)k使得f(x+k)+kf(x)=0對任意x∈R恒成立,稱y=f(x)是一個“k階伴隨函數(shù)”,k稱函數(shù)y=f(x)的“伴隨值”.下列結論正確的是
 

①k=-1是任意常數(shù)函數(shù)f(x)=c(c為常數(shù))的“伴隨值”;
②f(x)=x2是一個“k階伴隨函數(shù)”;
③“1階伴隨函數(shù)”y=f(x)是周期函數(shù),且1是函數(shù)y=f(x)的一個周期;
④f(x)=sin(πx+
π
3
)是一個“k階伴隨函數(shù)”;
⑤任意“k(k>0)階伴隨函數(shù)”y=f(x)一定存在零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將直線2x-y+λ=0沿x軸向右平移1個單位,所得直線與圓x2+y2+2x-4y=0相切,則實數(shù)λ的值為( 。
A、-3或7B、-2或8
C、0或10D、1或11

查看答案和解析>>

同步練習冊答案