9.在正三棱錐內(nèi)有一半球,其底面與正三棱錐的底面在同一平面內(nèi),正三棱錐的三個(gè)側(cè)面都和半球相切.如果半球的半徑等于1,正三棱錐的底面邊長(zhǎng)為$3\sqrt{2}$,則正三棱錐的高等于(  )
A.$\sqrt{2}$B.$2\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{3}$

分析 畫出圖形,設(shè)三棱錐的高 PO=x,在縱切面圖形可看出,Rt△PEO∽R(shí)t△POD,即可求出高的值.

解答 解:根據(jù)題意,畫出圖形如下,
其中,立體圖形只畫出了半球的底面.
∵正三棱錐的底面邊長(zhǎng)為$3\sqrt{2}$,
∴OD=$\frac{\sqrt{6}}{2}$,
設(shè)三棱錐的高 PO=x,在縱切面圖形可看出,Rt△PEO∽R(shí)t△POD,
∴$\sqrt{\frac{3}{2}+{x}^{2}}•1=\frac{\sqrt{6}}{2}•x$,
∴x=$\sqrt{3}$
故選:D.

點(diǎn)評(píng) 本題考查幾何體的內(nèi)接球的問(wèn)題,三角形相似的應(yīng)用,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.“2x>1”是“x>1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若$\int_0^n{|{x-5}|dx=25}$,則(2x-1)n的二項(xiàng)展開(kāi)式中x2的系數(shù)為180.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,sin2B=2sinAsinC.
(1)若△ABC為等腰三角形,求頂角C的余弦值;
(2)若△ABC是以B為直角頂點(diǎn)的三角形,且$|BC|=\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),若直線y=2x與雙曲線的一個(gè)交點(diǎn)的橫坐標(biāo)為c,則雙曲線的離心率為$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)△AnBnCn的三邊長(zhǎng)分別為an,bn,cn,n=1,2,3,…,若b1>c1,b1+c1=2a1,an+1=an,${b_{n+1}}=\frac{{{a_n}+{c_n}}}{2}$,${c_{n+1}}=\frac{{{a_n}+{b_n}}}{2}$,則∠An的最大值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{y≥x}\end{array}\right.$,則2y-x的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={-2,-1,0,1,2},B={x|$\frac{x+1}{x-2}$<0},則A∩B=( 。
A.{0,1}B.{-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=6,AB=3,AD=8,點(diǎn)M是棱AD的中點(diǎn),點(diǎn)N在棱AA1上,且滿足AN=2NA1,P是側(cè)面四邊形ADD1A1內(nèi)一動(dòng)點(diǎn)(含邊界),若C1P∥平面CMN,則線段C1P長(zhǎng)度的取值范圍是( 。
A.$[{\sqrt{17},5}]$B.[4,5]C.[3,5]D.$[{3,\sqrt{17}}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案