A. | [2,10] | B. | [$\sqrt{2}$,$\sqrt{10}$] | C. | (2,10) | D. | [2,10) |
分析 由g(x)=f(x)-logax=0,得f(x)=logax,分別作出函數(shù)f(x)和y=logax的圖象,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:當(dāng)x∈[0,2]時(shí),f(x)=4(1-|x-1|),
當(dāng)n=2時(shí),x∈[2,6],此時(shí)$\frac{x}{2}$-1∈[0,2],則f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1)=$\frac{1}{2}$×4(1-|$\frac{x}{2}$-1-1|)=2(1-|$\frac{x}{2}$-2|),
當(dāng)n=3時(shí),x∈[6,14],此時(shí)$\frac{x}{2}$-1∈[2,6],則f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1)=$\frac{1}{2}$×2(1-|$\frac{x}{4}$-$\frac{5}{2}$|)=1-|$\frac{x}{4}$-$\frac{5}{2}$|,
由g(x)=f(x)-logax=0,得f(x)=logax,分別作出函數(shù)f(x)和y=logax的圖象,
若0<a<1,則此時(shí)兩個(gè)函數(shù)圖象只有1個(gè)交點(diǎn),不滿足條件.
若a>1,當(dāng)對數(shù)函數(shù)圖象經(jīng)過A時(shí),兩個(gè)圖象只有2個(gè)交點(diǎn),當(dāng)圖象經(jīng)過點(diǎn)B時(shí),兩個(gè)函數(shù)有4個(gè)交點(diǎn),
則要使兩個(gè)函數(shù)有3個(gè)交點(diǎn),則對數(shù)函數(shù)圖象必須在A點(diǎn)以下,B點(diǎn)以上,
∵f(4)=2,f(10)=1,∴A(4,2),B(10,1),
即滿足$\left\{\begin{array}{l}{lo{g}_{a}4<f(4)}\\{lo{g}_{a}10>f(10)}\end{array}\right.$,
即$\left\{\begin{array}{l}{lo{g}_{a}4<2}\\{lo{g}_{a}10>1}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}^{2}>4}\\{a<10}\end{array}\right.$,
即2<a<10,
故選:C.
點(diǎn)評 本題主要考查分段函數(shù)的應(yīng)用,利用函數(shù)零點(diǎn)和方程之間的關(guān)系,將條件轉(zhuǎn)化為兩個(gè)函數(shù)交點(diǎn)問題,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強(qiáng),有一點(diǎn)的難度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | (¬p)∨(¬q) | C. | (¬p)∧q | D. | p∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 405 | B. | 810 | C. | 243 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k≥4 | B. | k>4 | C. | k≥8 | D. | k>8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com