11.設(shè)f(x)=$\frac{x}{2x+2}$(x>0),計(jì)算觀察以下格式:
f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…
根據(jù)以上事實(shí)得到當(dāng)n∈N*時(shí),fn(1)=$\frac{1}{3•{2}^{n}-2}$(n∈N*).

分析 根據(jù)已知中函數(shù)的解析式,歸納出函數(shù)解析中分母系數(shù)的變化規(guī)律,進(jìn)而得到答案.

解答 解:由已知中設(shè)函數(shù)f(x)=$\frac{x}{2x+2}$(x>0),觀察:
f1(x)=f(x)=$\frac{x}{2x+2}$,
f2(x)=f(f1(x))=$\frac{x}{6x+4}$;
f3(x)=f(f2(x))=$\frac{x}{14x+8}$.
f4(x)=f(f3(x))=$\frac{x}{30x+16}$

歸納可得:fn(x)=$\frac{x}{({2}^{n+1}-2)x+{2}^{n}}$,(n∈N*
∴fn(1)=$\frac{1}{3•{2}^{n}-2}$(n∈N*),
故答案為$\frac{1}{3•{2}^{n}-2}$(n∈N*).

點(diǎn)評(píng) 歸納推理的一般步驟是:(1)通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在等比數(shù)列{an}中,首項(xiàng)a1=1,若數(shù)列{an}的前n項(xiàng)之積為Tn,且T5=1024,則該數(shù)列的公比的值為( 。
A.2B.-2C.±2D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分圖象如圖所示,將函數(shù)y=f(x)的圖象向左平移$\frac{4π}{3}$個(gè)單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)在區(qū)間$[{\frac{π}{2},\frac{5π}{2}}]$上的最大值為( 。
A.3B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線ax+by-8=0(a>0,b>0)被圓x2+y2-2x-4y=0截得的弦長(zhǎng)為2$\sqrt{5}$,則ab的最大值是( 。
A.$\frac{5}{2}$B.4C.$\frac{9}{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC中,∠C=90°,且CA=3,點(diǎn)M滿足$\overrightarrow{BM}$=2$\overrightarrow{MA}$,則$\overrightarrow{CM}$•$\overrightarrow{CA}$的值為( 。
A.3B.6C.9D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知復(fù)數(shù)z=$\frac{3-i}{1+i}$,其中i為虛數(shù)單位,則復(fù)數(shù)z的模是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+m,x<0}\\{{x}^{2}-1,x≥0}\end{array}\right.$其中m>0,若函數(shù)y=f(f(x))-1有3個(gè)不同的零點(diǎn),則m的取值范圍是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某超市經(jīng)營(yíng)一批產(chǎn)品,在市場(chǎng)銷售中發(fā)現(xiàn)此產(chǎn)品在30天內(nèi)的日銷售量P(件)與日期t(1≤t≤30,t∈N+))之間滿足P=kt+b,已知第5日的銷售量為55件,第10日的銷售量為50件.
(1)求第20日的銷售量;                
(2)若銷售單價(jià)Q(元/件)與t的關(guān)系式為$Q=\left\{\begin{array}{l}t+20,1≤t<25\\ 80-t,25≤t≤30\end{array}\right.(t∈{N^+})$,求日銷售額y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若對(duì)任意x∈R,f′(x)=4x3,f(1)=-1,則f(x)=(  )
A.-x4B.-3x4+2C.x4-2D.4x4-5

查看答案和解析>>

同步練習(xí)冊(cè)答案