1.在等比數(shù)列{an}中,首項(xiàng)a1=1,若數(shù)列{an}的前n項(xiàng)之積為Tn,且T5=1024,則該數(shù)列的公比的值為( 。
A.2B.-2C.±2D.±3

分析 利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,∵首項(xiàng)a1=1,T5=1024,
∴15×q1+2+3+4=1024,即q10=210,解得q=±2.
故選:C.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在多項(xiàng)式(3$\sqrt{x}$-$\frac{2}{\root{3}{x}}$)4($\sqrt{x}$+2x)5的展開式中,含x2項(xiàng)的系數(shù)為(  )
A.-32B.32C.-96D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)函數(shù)f(x)=-x2+14x+15,數(shù)列{an}滿足an=f(n),n∈N+,數(shù)列{an}的前n項(xiàng)和Sn最大時(shí),n=( 。
A.14B.15C.14或15D.15或16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=-x2-6x-3,設(shè)max{p,q}表示p,q二者中較大的一個(gè).函數(shù)g(x)=max{($\frac{1}{2}$)x-2,log2(x+3)}.若m<-2,且?x1∈[m,-2),?x2∈(0,+∞),使得f(x1)=g(x2)成立,則m的最小值為( 。
A.-5B.-4C.-2$\sqrt{5}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知F1(-c,0)、F2(c、0)分別是橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{b^2}$=1(0<b<a<3)的左、右焦點(diǎn),點(diǎn)P(2,$\sqrt{2}$)是橢圓G上一點(diǎn),且|PF1|-|PF2|=a.
(1)求橢圓G的方程;
(2)設(shè)直線l與橢圓G相交于A、B兩點(diǎn),若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,其中O為坐標(biāo)原點(diǎn),判斷O到直線l的距離是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.三國(guó)魏人劉徽,自撰《海島算經(jīng)》,專論測(cè)高望遠(yuǎn).其中有一題:今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直.從前表卻行一百二十三步,人目著地取望島峰,與表末參合.從後表卻行百二十七步,人目著地取望島峰,亦與表末參合.問(wèn)島高幾何?譯文如下:要測(cè)量海島上一座山峰A的高度AH,立兩根高三丈的標(biāo)桿BC和DE,前后兩桿相距BD=1000步,使后標(biāo)桿桿腳D與前標(biāo)桿桿腳B與山峰腳H在同一直線上,從前標(biāo)桿桿腳B退行123步到F,人眼著地觀測(cè)到島峰,A、C、F三點(diǎn)共線,從后標(biāo)桿桿腳D退行127步到G,人眼著地觀測(cè)到島峰,A、E、G三點(diǎn)也共線,則山峰的高度AH=( 。 步(古制:1步=6尺,1里=180丈=1800尺=300步)
A.1250B.1255C.1230D.1200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在三棱錐C-PAB中,AB⊥BC,PB⊥BC,PA=PB=5,AB=6,BC=4,點(diǎn)M是PC的中點(diǎn),點(diǎn)N在線段AB上,且MN⊥AB.
(1)求AN的長(zhǎng);
(2)求銳二面角P-NC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知正六邊形ABCDEF內(nèi)接于圓O,連接AD,BE,現(xiàn)在往圓O內(nèi)投擲2000粒小米,則可以估計(jì)落在陰影區(qū)域內(nèi)的小米的粒數(shù)大致是( 。▍⒖紨(shù)據(jù):$\frac{π}{\sqrt{3}}$=1.82,$\frac{\sqrt{3}}{π}$=0.55)
A.550B.600C.650D.700

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)f(x)=$\frac{x}{2x+2}$(x>0),計(jì)算觀察以下格式:
f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…
根據(jù)以上事實(shí)得到當(dāng)n∈N*時(shí),fn(1)=$\frac{1}{3•{2}^{n}-2}$(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案