19.(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)($\frac{\sqrt{3}}{2}$i-$\frac{1}{2}$)+$\frac{\sqrt{3}}{2}$i=-$\frac{1}{2}$.

分析 根據(jù)復(fù)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)計(jì)算即可.

解答 解:原式=${(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)}^{2}$+$\frac{\sqrt{3}}{2}$i
=$\frac{1}{4}$-$\frac{3}{4}$-$\frac{\sqrt{3}}{2}$i+$\frac{\sqrt{3}}{2}$i
=-$\frac{1}{2}$,
故答案為:-$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算,熟練掌握復(fù)數(shù)的運(yùn)算性質(zhì)是解題的關(guān)鍵,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且$2sinAsinC(\frac{1}{tanAtanC}-1)=-1$.
(Ⅰ)求B的大;
(Ⅱ)若$a+c=\frac{{3\sqrt{3}}}{2},b=\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知{an}是等比數(shù)列,其中a1,a8是關(guān)于x的方程x2-2xsinα-$\sqrt{3}$sinα=0的兩根,且(a1+a82=2a3a6+6,則銳角α的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)y=2x(x≤0)的值域是( 。
A.(0,1)B.(-∞,1)C.(0,1]D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知復(fù)數(shù)z滿足($\sqrt{3}$+3i)z=3i,則z等于(  )
A.$\frac{3}{2}$-$\frac{\sqrt{3}}{2}$iB.$\frac{3}{4}$-$\frac{\sqrt{3}}{4}$iC.$\frac{3}{2}$+$\frac{\sqrt{3}}{2}$iD.$\frac{3}{4}$+$\frac{\sqrt{3}}{4}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別是a,b,c,且b=3,c=1,A=2B
(1)求a的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠ABC=90°,SA=AB=AD=1,BC=2.
(1)求異面直線BC與SD所成角的大小;
(2)求直線SC與平面SAB所成角的正切值;
(3)求三棱錐D-SBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知$\overline z$是z的共軛復(fù)數(shù),且|z|-$\overline z$=3+4i,則z的虛部是( 。
A.$\frac{7}{6}$B.$-\frac{7}{6}$C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某幾何體的三視圖如圖,它的側(cè)視圖與正視圖相同,則它的體積為( 。
A.$2+\frac{{4\sqrt{2}π}}{3}$B.$4+\frac{{8\sqrt{2}π}}{3}$C.$2+\frac{{8\sqrt{2}π}}{3}$D.$4+\frac{{4\sqrt{2}π}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案