分析 (1)由正弦定理得b=$\frac{asinB}{sinA}$,由此能求出b.
(2)由△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求出b=1,再利用余弦定理能求出a的值.
解答 解:(1)∵△ABC的內角A,B,C的對邊分別為a,b,c.
A=45°,B=60°,a=$\sqrt{2}$,
∴由正弦定理:$\frac{a}{sinA}=\frac{sinB}$得b=$\frac{asinB}{sinA}$=$\frac{\sqrt{2}×sin60°}{sin45°}$=$\sqrt{3}$.…(6分)
(2)∵△ABC的面積為$\frac{{\sqrt{3}}}{2}$,$c=2,A=\frac{π}{3}$,
∴S△ABC=$\frac{1}{2}bcsinA$=$\frac{1}{2}×b×2×sin\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,解得b=1,
∴a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{1+4-2×1×2×cos\frac{π}{3}}$=$\sqrt{3}$.…(12分)
點評 本題考查三角形中邊長的求法,考查三角形面積、正弦定理、余弦定理等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,0) | B. | (0,1] | C. | (0,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2+\sqrt{2}}{2}$ | B. | $\frac{2+\sqrt{3}}{2}$ | C. | 1+$\sqrt{2}$ | D. | 1+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{5}{2}$ | C. | $\frac{\sqrt{10}}{2}$ | D. | $\frac{\sqrt{13}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{7}{25}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com