3.已知f(x-2)的定義域?yàn)閇2,4].
(1)求f(x)的定義域;
(2)求f(2x+1)的定義域.

分析 (1)注意y=f(x-2)與y=f(x)中的x不是同一x,但是x-2與x的范圍一致,利用函數(shù)f(x-2)的定義域?yàn)閇2,4],就是x∈[2,4],求出x-2的范圍,就是函數(shù)f(x)中x的范圍,從而求出x的范圍,即為y=f(x)的定義域.
(2)與(1)類似通過(guò)2x+1的范圍,求解x的范圍即可.

解答 解:(1)由y=f(x-2)的定義域?yàn)閇2,4]知x-2∈[0,2],
∴y=f(x)應(yīng)滿足0≤x≤2
故y=f(x)的定義域?yàn)閇0,2].
(2)由(1)可知:x-2∈[0,2],
可得:2x+1∈[0,2],即0≤2x+1≤2,解得$-\frac{1}{2}≤x≤\frac{1}{2}$,
f(2x+1)的定義域:[-$\frac{1}{2}$,$\frac{1}{2}$].

點(diǎn)評(píng) 本題考查抽象函數(shù)的定義域的求法,考查計(jì)算能力(注意y=f(x-2)與y=f(x)中的x不是同一x,但是x-2與x的范圍一致.考查轉(zhuǎn)化思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.有如下4個(gè)結(jié)論,
①冪函數(shù)的圖象必過(guò)定點(diǎn)(1,1);
②已知x1,x2滿足2${\;}^{{x}_{1}}$+x1-2=0,log2x2+x2-2=0,則x1+x2=2;
③已知函數(shù)f(x)=logax+$\frac{1}{{x}^{2}+1}$,(a>0且a≠1),f(5)=1,則f(0.2)=1;
④函數(shù)f(x)=|x2-1|的增區(qū)間是[-1,0]∪[1,+∞),
其中正確結(jié)論的代號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{5}$,且對(duì)于任意正整數(shù)m,n都有an+m=an•am.若Sn<a對(duì)任意n∈N*恒成立,則實(shí)數(shù)a的最小值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)A是雙曲線y=$\frac{2017}{x}$上一動(dòng)點(diǎn),自A向橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1引兩切線AP,AQ,切點(diǎn)分別為P,Q,若橢圓的左焦點(diǎn)為F,求$\frac{|AF{|}^{2}}{|PF||QF|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)y=2x-3+3的圖象橫過(guò)定點(diǎn)(3,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列集合A到集合B在對(duì)應(yīng)關(guān)系f下是函數(shù)的是( 。
A.A={-1,0,1},B={0,1},f:A中的數(shù)平方B.A={0,1},B={-1,0,1},f:A中的數(shù)平方根
C.A=Z,B=Q,f:A中的數(shù)取倒數(shù)D.A=R,B={正實(shí)數(shù)},f:A中的數(shù)取絕對(duì)值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在等腰銳角△ABC中,a=3,c=2,則cosA等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(-2,1),$\overrightarrow{c}$=(-1,6).
(1)若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥$\overrightarrow$,求實(shí)數(shù)k的值;
(2)求滿足$\overrightarrow{c}$=m$\overrightarrow{a}$+n$\overrightarrow$的實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.將函數(shù)y=f(x)的圖象向右平移$\frac{π}{2}$單位得到函數(shù)y=cos2x的圖象,則f(x)=( 。
A.-sin2xB.cos2xC.sin2xD.-cos2x

查看答案和解析>>

同步練習(xí)冊(cè)答案