分析 (1)利用絕對(duì)值不等式,結(jié)合關(guān)于x的不等式|x+3|+|x+m|≥2m的解集為R,求出m的范圍,即可得出結(jié)論;
(2)利用柯西不等式,可得2a2+3b2+4c2的最小值及此時(shí)a,b,c的值.
解答 解:(1)因?yàn)閨x+3|+|x+m|≥|(x+3)-(x+m)|=|m-3|.
當(dāng)-3≤x≤-m或-m≤x≤-3時(shí)取等號(hào),
令|m-3|≥2m所以m-3≥2m或m-3≤-2m.
解得m≤-3或m≤1
∴m的最大值為1.
(2)∵a+b+c=1.
由柯西不等式,$({\frac{1}{2}+\frac{1}{3}+\frac{1}{4}})({2{a^2}+3{b^2}+4{c^2}})$≥(a+b+c)2=1,
∴$2{a^2}+3{b^2}+4{c^2}≥\frac{12}{13}$,等號(hào)當(dāng)且僅當(dāng)2a=3b=4c,且a+b+c=1時(shí)成立.
即當(dāng)且僅當(dāng)$a=\frac{6}{13}$,$b=\frac{4}{13}$,$c=\frac{3}{13}$時(shí),2a2+3b2+4c2的最小值為$\frac{12}{13}$.
點(diǎn)評(píng) 本題給出等式a+b+c=1,求式子2a2+3b2+4c2的最小值.著重考查了運(yùn)用柯西不等式求最值與柯西不等式的等號(hào)成立的條件等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.95 | B. | 0.05 | C. | 0.47 | D. | 0.48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{25}$ | B. | -$\frac{24}{25}$ | C. | -$\frac{1}{25}$ | D. | $\frac{1}{25}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com