分析 (1)由題可知PE⊥AB,CE⊥AB.求解三角形可得PE=CE=$\sqrt{3}$.結合PC=$\sqrt{6}$,得PE2+EC2=PC2,可得PE⊥CE.再由線面垂直的判定可得PE⊥平面ABCD;
(2)由正弦定理求出S△BCD.然后利用等積法求得三棱錐D-PBC的體積.
解答 證明:(1)由題可知PE⊥AB,CE⊥AB.
∵AB=2,∴PE=CE=$\sqrt{3}$.
又∵PC=$\sqrt{6}$,∴PE2+EC2=PC2,
∴∠PEC=90°,即PE⊥CE.
又∵AB,CE?平面ABCD,
∴PE⊥平面ABCD;
解:(2)S△BCD=$\frac{1}{2}$×22×sin120°=$\sqrt{3}$,PE=$\sqrt{3}$.
由(1)知:PE⊥平面ABCD,
VP-BCD=$\frac{1}{3}$•S△BCD•PE=1.
∵VD-PBC=VP-BCD,
∴三棱錐D-PBC的體積為1.
點評 本題考查直線與平面垂直的判定,考查空間想象能力和思維能力,訓練了利用等積法求多面體的體積,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{61}}{6}$π | B. | $\frac{\sqrt{61}}{24}$π | C. | $\frac{61\sqrt{61}}{2}$π | D. | $\frac{61\sqrt{61}}{6}$π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 不存在x0∈R,2${\;}^{{x}_{0}}$>0 | B. | 存在x0∈R,2${\;}^{{x}_{0}}$≥0 | ||
C. | 對任意的x∈R,2x≤0 | D. | 對任意的x∈R,2x>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年份x | 2010 | 2011 | 2012 | 2013 | 2014 |
需求量y萬噸 | 236 | 246 | 257 | 276 | 286 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com