分析 把原式還原成二項式定理.利用二項式定理展開,對n的奇偶性討論,可得答案.
解答 解:${7^n}+{7^{n-1}}C_n^1+{7^{n-2}}C_n^2+…+7C_n^{n-1}$=(7+1)n-1=8n-1=(9-1)n-1=${C}_{n}^{0}{9}^{n}{+C}_{n}^{1}{9}^{n-1}(-1$)+…+${C}_{n}^{n-1}{9}^{1}(-1)^{n-1}+{C}_{n}^{n}{9}^{0}(-1)^{n}-1$
①n是正偶數(shù),則原式=(9-1)n-1=${C}_{n}^{0}{9}^{n}{+C}_{n}^{1}{9}^{n-1}(-1$)+…+${C}_{n}^{n-1}{9}^{1}(-1)^{n-1$
每項都是9的倍數(shù).
∴這整個式子都可以被9整除,此時余數(shù)為0.
②若n是正奇數(shù),則原式=${C}_{n}^{0}{9}^{n}{+C}_{n}^{1}{9}^{n-1}(-1$)+…+${C}_{n}^{n-1}{9}^{1}(-1)^{n-1}+{C}_{n}^{n}{9}^{0}(-1)^{n}-1$.
=${C}_{n}^{0}{9}^{n}{+C}_{n}^{1}{9}^{n-1}(-1$)+…+${C}_{n}^{n-1}{9}^{1}(-1)^{n-1}-2$.
∵-2不能整除9
∴余數(shù)就應(yīng)該是7.
綜上,余數(shù)應(yīng)該是0或7.
故答案為:0或7.
點評 本題考查了二項式定理的靈活運用和整除問題.屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45°,$\frac{{4\sqrt{2}}}{3}$ | B. | 30°,$\frac{{4\sqrt{2}}}{3}$ | C. | 60°,$\frac{{2\sqrt{2}}}{3}$ | D. | 75°,$\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 正三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 10 | C. | 12 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (5,8) | B. | (8,+∞) | C. | ($\frac{13}{2}$,8) | D. | (5,$\frac{13}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1006 | B. | 1007 | C. | 1008 | D. | 1009 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com