分析 首先由拋物線y2=2px(p>0)的一條弦AB過焦點(diǎn)F,且|AF|=2,|BF|=3,可把點(diǎn)A,B的坐標(biāo)設(shè)出來,然后應(yīng)用圓錐曲線的焦半徑公式把|AF|+|BF和|AF|•|BF|用x1,x2表示出來,然后解出p的值即可得到拋物線方程.
解答 解:由拋物線y2=2px的一條弦AB過焦點(diǎn)F,可設(shè)A(x1,y1),B(x2,y2),
則|AF|=x1+$\frac{p}{2}$,|BF|=x2+$\frac{p}{2}$,則|AF|+|BF|=x1+x2+p=5,
∴x1+x2=5-p,而x1•x2=$\frac{{p}^{2}}{4}$.
由|AF|•|BF|=x1•x2+$\frac{p}{2}$(x1+x2)+$\frac{{p}^{2}}{4}$=6.
得$\frac{{p}^{2}}{2}$+$\frac{p}{2}$•(5-p)=6,即$\frac{5p}{2}$=6,
∴p=$\frac{12}{5}$,拋物線方程為y2=$\frac{24}{5}$x.
故答案為:y2=$\frac{24}{5}x$.
點(diǎn)評(píng) 此題主要考查拋物線標(biāo)準(zhǔn)方程的求法,其中涉及到圓錐曲線的焦半徑公式的應(yīng)用,在高考中屬于重點(diǎn)的考點(diǎn),且有一定的難度希望同學(xué)們注意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若“x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題 | |
B. | 在△ABC中,sinA>sinB的充要條件是A>B | |
C. | 函數(shù)f(x)=sinx+$\frac{4}{sinx}$,x∈(0,π)的最小值為4 | |
D. | ?x∈R,使得sinx•cosx=$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com