【題目】如圖,在四棱錐中,是等邊三角形,,,.
(1)若,求三棱錐的體積;
(2)若,則在線段上是否存在一點,使平面平面.若存在,求線段的長;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè),當(dāng)時,求函數(shù)的單調(diào)減區(qū)間及極大值;
(2)設(shè)函數(shù)有兩個極值點,
①求實數(shù)的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在平面直角坐標(biāo)系,已知曲線(為參數(shù)),在以原點為極點, 軸的非負半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為。
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)過點且與直線平行的直線交于, 兩點,求點到, 的距離之積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】跨年迎新聯(lián)歡晚會簡稱跨年晚會,是指每年陽歷年末12月31日晚上各電視臺和政府為喜迎新而精心策劃的演唱會活動,跨年晚會首次出現(xiàn)在港臺地區(qū),跨年晚會因形式和舉辦地不同因而名稱也不同,如央視啟航2020跨年盛典,湖南衛(wèi)視跨年演唱會,東方衛(wèi)視迎新晚會等.某電視臺為了了解2020年舉辦的跨年迎新晚會觀眾的滿意度,現(xiàn)分別隨機選出名觀眾對迎新晚會的質(zhì)量評估評分,最高分為分,綜合得分情況如下表所示:
綜合得分 | |||||||
觀眾人數(shù) | 5 | 10 | 25 | 30 | 15 | 10 | 5 |
根據(jù)表中的數(shù)據(jù),回答下列問題:
(1)根據(jù)表中的數(shù)據(jù),繪制這位觀眾打分的頻率分布直方圖;
(2)已知觀眾的評分近似服從,其中是反應(yīng)隨機變量取值的平均水平的特征數(shù),工作人員在分析數(shù)據(jù)時發(fā)現(xiàn),可用位觀眾評分的平均數(shù)估計,但由于評分觀眾人數(shù)較少,誤差較大,所以不能直接用位觀眾評分的標(biāo)準差的值估計,而在這位觀眾打分的頻率分布直方圖的基礎(chǔ)上依據(jù)來估計更科學(xué)合理,試求和的估計值(的結(jié)果精確到小數(shù)點后兩位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處的切線方程為,求實數(shù),的值;
(2)若函數(shù)在和兩處取得極值,求實數(shù)的取值范圍;
(3)在(2)的條件下,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解校園安全教育系列活動的成效,對全校學(xué)生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應(yīng)等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下:
等級 | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | a | 24 | b |
(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);
(2)其他條件不變在評定等級為“合格”的學(xué)生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;
(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2010年至2018年之間,受益于基礎(chǔ)設(shè)施建設(shè)對光纖產(chǎn)品的需求,以及個人計算機及智能手機的下一代規(guī)格升級,電動汽車及物聯(lián)網(wǎng)等新機遇,全球連接器行業(yè)增長呈現(xiàn)加速狀態(tài).根據(jù)如下折線圖,下列結(jié)論正確的個數(shù)為( )
①每年市場規(guī)模逐年增加;
②市場規(guī)模增長最快的是2013年至2014年;
③這8年的市場規(guī)模增長率約為40%;
④2014年至2018年每年的市場規(guī)模相對于2010年至2014年每年的市場規(guī)模,數(shù)據(jù)方差更小,變化比較平穩(wěn).
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,
①若曲線與直線相切,求c的值;
②若曲線與直線有公共點,求c的取值范圍.
(2)當(dāng)時,不等式對于任意正實數(shù)x恒成立,當(dāng)c取得最大值時,求a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com