A. | $\frac{2013}{2014}$ | B. | $\frac{2014}{2015}$ | C. | $\frac{2015}{2016}$ | D. | $\frac{1}{2015}$ |
分析 由“均倒數(shù)”的定義,求得Sn,即可求得an,求得bn,利用裂項法即可求得答案.
解答 解:由已知定義,得到$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n+1}$,
∴a1+a2+…+an=n(2n+1)=Sn,
即Sn=2n2+n.
當n=1時,a1=S1=3.
當n≥2時,an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]=4n-1.
當n=1時也成立,
∴an=4n-1;
∴${b_n}=\frac{{{a_n}+1}}{4}$=n.
∵∴bn=n,則$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+$…$+\frac{1}{{{b_{2015}}{b_{2016}}}}$=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{2015}$-$\frac{1}{2016}$)
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2015}$-$\frac{1}{2016}$
=1-$\frac{1}{2016}$
=$\frac{2015}{2016}$,
故選C.
點評 本題考查數(shù)列的求和,數(shù)列的新定義,考查“裂項法”求數(shù)列的前n項和,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 該函數(shù)值域為[-1,1] | |
B. | 當且僅當x=2kπ+$\frac{π}{2}$(k∈Z)時,函數(shù)取最大值1 | |
C. | 該函數(shù)是以π為最小正周期的周期函數(shù) | |
D. | 當π+2kπ<x<2kπ+$\frac{3π}{2}$(k∈Z)時,f(x)<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,1] | B. | [0,2] | C. | [-2,2] | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow a∥\overrightarrow b$,且$\overrightarrow a與\overrightarrow b$方向相同 | B. | $\overrightarrow a與\overrightarrow b$是方向相反的向量 | ||
C. | $\overrightarrow a=-\overrightarrow b$ | D. | $\overrightarrow a,\overrightarrow b$無論什么關(guān)系均可 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com