8.$\overrightarrow a,\overrightarrow b$為非零向量,$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}|$,則( 。
A.$\overrightarrow a∥\overrightarrow b$,且$\overrightarrow a與\overrightarrow b$方向相同B.$\overrightarrow a與\overrightarrow b$是方向相反的向量
C.$\overrightarrow a=-\overrightarrow b$D.$\overrightarrow a,\overrightarrow b$無(wú)論什么關(guān)系均可

分析 利用同向向量的性質(zhì)判斷即可.

解答 解:∵$\overrightarrow a,\overrightarrow b$為非零向量,且|$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}|$,
∴$\overrightarrow{a}$,$\overrightarrow$方向相同,
∴$\overrightarrow{a}$∥$\overrightarrow$,
故選:A.

點(diǎn)評(píng) 本題考查同向向量模的性質(zhì)、熟練掌握向量的性質(zhì)是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$+xcosx)dx=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=x3-3x2-9x+1的單調(diào)遞減區(qū)間為(  )
A.(-1,3)B.(-∞,-1)或(3,+∞)C.(-3,1)D.(-∞,-3)或(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.定義為n個(gè)正數(shù)p1,p2,p3…pn的“均倒數(shù)”,若已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為$\frac{1}{2n+1}$,又${b_n}=\frac{{{a_n}+1}}{4}$,則$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+$…$+\frac{1}{{{b_{2015}}{b_{2016}}}}$=(  )
A.$\frac{2013}{2014}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{1}{2015}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)函數(shù)f(x)=1+sin2x,則等于$\lim_{△x→0}\frac{{f({△x})-f(0)}}{△x}$( 。
A.-2B.0C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某大型汽車城為了了解銷售單價(jià)(單位:萬(wàn)元)在[8,20]內(nèi)的轎車的銷售情況,從2016年上半年已經(jīng)銷售的轎車中隨機(jī)抽取100輛,按其銷售單價(jià)分成6組,制成如下的頻數(shù)分布表.
銷售單價(jià)/萬(wàn)元[8,10)[10,12)[12,14)[14,16)[16,18)[18,20]
頻數(shù)/輛51020a20b
已知樣本中銷售單價(jià)在[14,16)內(nèi)的轎車數(shù)是銷售單價(jià)在[18,20]內(nèi)的轎車數(shù)的2倍.
(1)用分層抽樣的方法從單價(jià)在[8,10),[10,12)和[18,20]內(nèi)的轎車中共抽取6輛,求銷售單價(jià)在[18,20]內(nèi)的轎車數(shù);
(2)在(1)中抽出的6輛轎車中任取2輛,求至少有1輛轎車的銷售單價(jià)在[18,20]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè){an}是首項(xiàng)大于零的等比數(shù)列,則“a12<a22”是“數(shù)列{an}為遞增數(shù)列”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=ax2+bx(a>0,b>0)在點(diǎn)(1,f(1))處的切線斜率為2,則$\frac{8a+b}{ab}$的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=|x|的圖象是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案