8.已知集合A={-3,-2,-1},B={x∈Z|-2≤x≤1},則A∪B=( 。
A.{-1}B.{-2,-1}C.{-3,-2,-1,0}D.{-3,-2,-1,0,1}

分析 先分別求出集合A,B,由此利用并集定義能求出A∪B.

解答 解:∵集合A={-3,-2,-1},
B={x∈Z|-2≤x≤1}={-2,-1,0,1},
∴A∪B={-3,-2,-1,0,1}.
故選:D.

點(diǎn)評(píng) 本題考查并集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若(x-$\frac{2}{x}$)n的展開(kāi)式中第二項(xiàng)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,則直線y=nx與曲線y=x2圍成的封閉圖形的面積為$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$與雙曲線C2:x2-y2=1有公共的焦點(diǎn),雙曲線C2的一條漸近線與以橢圓C1的長(zhǎng)軸為直徑的圓相交于A、B兩點(diǎn),與橢圓C1交于M、N兩點(diǎn),若$AB=\sqrt{2}MN$,則橢圓C1的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{3}+{y}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)x∈[0,3],執(zhí)行如圖所示的程序框圖,從輸出的結(jié)果中隨機(jī)取一個(gè)數(shù)a,則“a≤5”的概率為( 。
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{2}{7}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知一個(gè)三棱錐的所有棱長(zhǎng)均為$\sqrt{2}$,則該三棱錐的內(nèi)切球的體積為$\frac{{\sqrt{3}}}{54}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=x3+ax+1的圖象在點(diǎn)(1,f(1))處的切線過(guò)點(diǎn)(2,7),則a=(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)F1、F2是雙曲線C的兩個(gè)焦點(diǎn),若曲線C上存在一點(diǎn)P與F1關(guān)于曲線C的一條漸近線對(duì)稱(chēng),則雙曲線C的離心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知x、y滿(mǎn)足$\left\{\begin{array}{l}x-y≥0\\ x+y-4≥0\\ x≤4\end{array}\right.$則4x-y的最小值為( 。
A.4B.6C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知雙曲線C的中心為坐標(biāo)原點(diǎn),它的焦點(diǎn)F(2,0)到它的一條漸近線的距離為$\sqrt{3}$,則C的離心率為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案