18.若(x-$\frac{2}{x}$)n的展開式中第二項(xiàng)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,則直線y=nx與曲線y=x2圍成的封閉圖形的面積為$\frac{32}{3}$.

分析 先確定n的值,再求出直線y=nx與曲線y=x2交點(diǎn)坐標(biāo),利用定積分求得直線y=nx與曲線y=x2圍成圖形的面積.

解答 解:∵(x-$\frac{2}{x}$)n的展開式中第2項(xiàng)與第4項(xiàng)的二項(xiàng)式系數(shù)相等,
∴Cn1=Cn3,
∴n=4,
由直線y=4x與曲線y=x2,可得交點(diǎn)坐標(biāo)為(0,0),(4,16),
∴直線y=nx與曲線y=x2圍成的封閉區(qū)域面積為${∫}_{0}^{4}$(4x-x2)dx=(2x2-$\frac{1}{3}$x3)|${\;}_{0}^{4}$=$\frac{32}{3}$.
故答案為:$\frac{32}{3}$

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,利用定積分求曲邊形的面積,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC中,2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,求$\frac{{S}_{△OBC}}{{S}_{△ABC}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)△ABC的面積為S1,它的外接圓面積為S2,若△ABC的三個(gè)內(nèi)角大小滿足A:B:C=3:4:5,則$\frac{{S}_{1}}{{S}_{2}}$的值為(  )
A.$\frac{25}{12π}$B.$\frac{25}{24π}$C.$\frac{3+\sqrt{3}}{2π}$D.$\frac{3+\sqrt{3}}{4π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{ax,x<0}\end{array}\right.$若方程f(-x)=f(x)有五個(gè)不同的根,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,-e)B.(-∞,-1)C.(1,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn),G分別是棱BC,CC1,CD的中點(diǎn),平面α過點(diǎn)B1且與平面EFG平行,則平面α被該正方體外接球所截得的截面圓的面積為為$\frac{2}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=(x2+a)ex(a是常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)與x軸相切.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)設(shè)方程f(x)=x2+x的所有根之和為S,且S∈(n,n+1),求整數(shù)n的值;
(Ⅲ)若關(guān)于x的不等式mf(x)+2x+2<2ex在(-∞,0)內(nèi)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{-2x+1≤y≤2x-1}\\{0<x≤3}\end{array}\right.$,則x-2y的取值范圍是[-7,13].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某三棱錐的三視圖如圖所示,則其外接球的表面積為$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={-3,-2,-1},B={x∈Z|-2≤x≤1},則A∪B=( 。
A.{-1}B.{-2,-1}C.{-3,-2,-1,0}D.{-3,-2,-1,0,1}

查看答案和解析>>

同步練習(xí)冊答案