6.已知向量$\overrightarrow a,\overrightarrow b$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則$|{\overrightarrow a-\overrightarrow b}|$=(  )
A.$\sqrt{19}$B.19C.$\sqrt{7}$D.7

分析 根據(jù)平面向量的數(shù)量積與模長公式,即可求出$|{\overrightarrow a-\overrightarrow b}|$的值.

解答 解:向量$\overrightarrow a,\overrightarrow b$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,
向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,
∴${(\overrightarrow{a}-\overrightarrow)}^{2}$=${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$=22-2×2×3×cos60°+32=7
∴$|{\overrightarrow a-\overrightarrow b}|$=$\sqrt{7}$.
故選:C.

點評 本題考查了平面向量的數(shù)量積與模長公式的應(yīng)用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.如圖所示,已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,E的右焦點到直線y=x+1的距離為$\sqrt{2}$.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的右頂點為A,不經(jīng)過點A的直線l與橢圓E交于M,N兩點,且以MN為直徑的圓過A,求證:直線l恒過定點,并求出此定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.天氣預報說,在今后三天中,每天下雨的概率均為0.4,有人用計算機產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),他用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,產(chǎn)生3個隨機數(shù)作為一組,產(chǎn)生20組隨機數(shù)如下:027   556   488   730   113   537   989   907   966   191   925   271   932   812   458   569   683   431   257   393,以此預測這三天中至少有兩天下雨的概率大約是( 。
A.0.30B.0.33C.0.35D.0.375

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.${e^{ln3}}+{(\frac{1}{8})^{-\frac{2}{3}}}$=7.(其中e是自然對數(shù)的底數(shù),e=2.718828…)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)$f(x)={a^x}+\frac{1-t}{a^2}(a>0,a≠1)$是定義域為R上的奇函數(shù).
(1)求實數(shù)t的值;
(2)若f(1)>0,不等式f(x2+bx)+f(4-x)>0在x∈R上恒成立,求實數(shù)b的取值范圍;
(3)若$f(1)=\frac{3}{2}$且$h(x)={a^{2x}}+\frac{1}{{{a^{2x}}}}-2mf(x)$[1,+∞)上最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在△ABC中,|AB|=5,|AC|=6,若B=2C,則邊BC的長為(  )
A.5B.$\frac{11}{5}$C.$\frac{9}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知等比數(shù)列{an}的前n項和為Sn,且S4=a5-a1
(1)求數(shù)列{an}的公比q的值;
(2)記bn=log2an+1,數(shù)列{bn}的前n項和為Tn,若T4=2b5,求數(shù)列a1的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.正項數(shù)列{an}滿足a1=$\frac{1}{4}$,a1+a2+…+an=2anan+1,則通項an=$\frac{n}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.某商場在2017年元旦開展“購物折上折”活動,商場內(nèi)所有商品先按標價打八折,折后價格每滿500元再減100元,如某商品標價1500元,則購買該商品的實際付款額為1500×0.8-200=1000元.設(shè)購買某商品的實際折扣率=$\frac{實際付款額}{商品的標價}×100%$,某人欲購買標價為2700元的商品,那么他可以享受的實際折扣率約為( 。
A.55%B.65%C.75%D.80%

查看答案和解析>>

同步練習冊答案