6.f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),求m的范圍m≤-16.

分析 求出二次函數(shù)的對(duì)稱(chēng)軸,然后求解即可.

解答 解:f(x)=4x2-mx+5的開(kāi)口向上,對(duì)稱(chēng)軸為:x=$\frac{m}{8}$,f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),
可得:$\frac{m}{8}≤-2$,解得m≤-16.
故答案為:m≤-16

點(diǎn)評(píng) 本題考查二次函數(shù)的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.下列結(jié)論正確的是①②④.
①在某項(xiàng)測(cè)量中,測(cè)量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.35,則ξ在(0,2)內(nèi)取值的概率為0.7;
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,其變換后得到線性回歸方程z=0.3x+4,則c=e4;
③已知命題“若函數(shù)f(x)=ex-mx在(0,+∞)上是增函數(shù),則m≤1”的逆否命題是“若m>1,則函數(shù)f(x)=ex-mx在(0,+∞)上是減函數(shù)”,是真命題;
④設(shè)常數(shù)a、b∈R+,則不等式ax2-(a+b-1)x+b>0對(duì)?x>1恒成立的充要條件是a≥b-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x2+(a+1)x+(a+2)
(1)若f(x)能表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)的和,求g(x)和h(x)的解析式.
(2)命題p:函數(shù)f(x)在區(qū)間[(a+1)2,+∞)上是增函數(shù);命題q:函數(shù)g(x)是減函數(shù).如果命題¬p,p∨q都是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在正方體ABCD-A1B1C1D1中(如圖),已知點(diǎn)P在直線BC1上運(yùn)動(dòng),則下列四個(gè)命題:
①三棱錐A-D1PC的體積不變;
②直線AP與平面ACD1所成的角的大小不變;
③二面角P-AD1-C的大小不變;
④M是平面A1B1C1D1上到點(diǎn)D和C1距離相等的點(diǎn),則M點(diǎn)的軌跡是直線A1D1
其中真命題的編號(hào)是①③④(寫(xiě)出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,底面ABCD為梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分別是AD,PB的中點(diǎn).
(Ⅰ)求證:PD∥平面OCM;
(Ⅱ)若AP與平面PBD所成的角為60°,求線段PB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)偶函數(shù)f(x)對(duì)任意x∈R,都有$f(x+3)=-\frac{1}{f(x)}$,且當(dāng)x∈[-3,-2]時(shí),f(x)=4x,則f(2018)=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={x|ax2+x-3=0},B={x|3≤x<7},若A∩B≠∅,則實(shí)數(shù)a的取值集合為( 。
A.$[-\frac{1}{12},-\frac{4}{49})$B.$[-\frac{1}{12},0]$C.$(-\frac{4}{49},0]$D.$[-\frac{4}{49},0]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知x,y為正實(shí)數(shù),且x+y+$\frac{1}{x}$+$\frac{1}{y}$=5,則x+y的最大值是( 。
A.3B.$\frac{7}{2}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.過(guò)拋物線y=2x2的焦點(diǎn)F作傾斜角為120°的直線交拋物線于A、B兩點(diǎn),則弦|AB|的長(zhǎng)為( 。
A.2B.$\frac{2}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案