10.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,2Sn=nan+5n
(Ⅰ)證明數(shù)列{an}為等差數(shù)列;
(Ⅱ)已知S3=21,求數(shù)列{an}的通項(xiàng)公式.

分析 (Ⅰ)由2Sn=n•an+5n,得:2an+1=(n+1)an+1-nan+5(n-1)an+1-nan+5=0,從而nan+2-2nan+1+nan=0,由此能證明{an}為等差數(shù)列.
(Ⅱ)由等差數(shù)列項(xiàng)公式求出a2=7,由n=1,得a1=5,從而求出{an}的公差,由此能求出數(shù)列{an}的通項(xiàng)公式.

解答 證明:(Ⅰ)2Sn=n•an+5n,①
以n+1代替①式中的n,得:2Sn+1=(n+1)an+1+5(n+1),②
②-①,得:2an+1=(n+1)an+1-nan+5(n-1)an+1-nan+5=0,③
以n+1代換③中的n 得:nan+2-(n+1)an+1+5=0,④
④-③,得:nan+2-2nan+1+nan=0,
即an+2+an=2an+1,
∴{an}為等差數(shù)列.
解:(Ⅱ)∵S3=3a2=21,∴a2=7,
①式中,n=1,得a1=5,
∴{an}的公差d=a2-a1=2,
∴an=2n+3.

點(diǎn)評(píng) 本題考查等差數(shù)列的證明,考查數(shù)列的通項(xiàng)公式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.平面內(nèi)有$\overrightarrow{o{p_1}}+\overrightarrow{o{p_2}}+\overrightarrow{o{p_3}}=\overrightarrow 0$,且$|\overrightarrow{o{p_1}}|=|\overrightarrow{o{p_2}}|=|\overrightarrow{o{p_3}}|=1$,則△P1P2P3的形狀是等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在ABC中,角A,B,C所對(duì)的邊分別為a,b,c.若$sin(A+B)=\frac{1}{3}$,a=3,c=4,則sinA=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知圓O:x2+y2=4及一點(diǎn)P(-1,0),Q在圓O上運(yùn)動(dòng)一周,PQ的中點(diǎn)M形成軌跡C.
(1)求軌跡C的方程;
(2)若直線PQ的斜率為1,該直線與軌跡C交于異于M的一點(diǎn)N,求△CMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知兩點(diǎn)A(0,1),B(4,3),則線段AB的垂直平分線方程是2x+y-6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.△ABC中,b=8,$c=8\sqrt{3}$,${S_{△ABC}}=16\sqrt{3}$,則∠A等于$\frac{π}{6}$或$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$),則f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)函數(shù)f(x)=sin(ωx+ϕ),A>0,ω>0,若f(x)在區(qū)間$[\frac{π}{6},\frac{π}{2}]$上單調(diào),且$f({\frac{π}{2}})=f({\frac{2π}{3}})=-f({\frac{π}{6}})$,則f(x)的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列函數(shù)中,在(0,$\frac{π}{2}$)上是增函數(shù)的偶函數(shù)是( 。
A.y=|sinx|B.y=|sin2x|C.y=|cosx|D.y=tanx

查看答案和解析>>

同步練習(xí)冊(cè)答案